Satellite observations and modeling of the polar ionosphere under conditions of the dominant azimuthal (by) imf component
- Авторлар: Lukianova R.Y.1
-
Мекемелер:
- Space Research Institute RAS (RSI RAS), Moscow, Russia
- Шығарылым: Том 65, № 5 (2025)
- Беттер: 691-703
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0016-7940/article/view/352727
- DOI: https://doi.org/10.7868/S3034502225050122
- ID: 352727
Дәйексөз келтіру
Аннотация
The processes that occur in the polar cap region and depending on the IMF By sign are considered. The paper describes the results of a comparative analysis of the distribution of field-aligned currents, auroral precipitation, ionospheric plasma convection, and electron density under conditions of northward IMF and the IMF By component of opposite signs. The field-aligned currents and precipitating particles are obtained from the AMPERE and DMSP satellite data. The convection patterns are obtained from the SuperDARN and numerical models; the electron density is calculated using the empirical IRI and regional numerical models. It is shown that the disturbances in the northern hemisphere are concentrated near the pole and differ significantly at opposite By signs. At By+, the precipitation intensity at the center of the polar cap is much higher than at By–. Moreover, only at By+ does the evening convective cell prevail over the morning one, providing a circumpolar flow of ionospheric plasma in a broader range of latitudes. The model electron density distribution in the polar cap shows the formation of a polar peak at By+ and a depletion at By–, which corresponds to the direction of field-aligned currents and the structure of precipitation. If By+, a ‘cyclone’-type structure is formed in the northern polar ionosphere, where the energy and momentum of the solar wind are effectively transferred to the ionosphere during several hours of the northward IMF.
Авторлар туралы
R. Lukianova
Space Research Institute RAS (RSI RAS), Moscow, Russia
Хат алмасуға жауапты Автор.
Email: lukianova@cosmos.ru
Әдебиет тізімі
- Лукьянова Р. Ю., Козловский А., Христиансен Ф. Асимметричные структуры продольных токов и конвекции ионосферной плазмы, контролируемые азимутальной компонентой ММП и сезоном года // Геомагнетизм и аэрономия. Т. 50. № 5. С. 695‒706. 2010.
- Лукьянова Р.Ю. Влияние продольных токов на электронную концентрацию в ионосфере: сопряженные наблюдения спутников SWARM и радара ESR // Космические исследования Т. 61. № 6. С. 466–475. 2023. https://doi.org/10.31857/S0023420623600083
- Anderson B.J., Korth H., Waters C.L., et al. Statistical Birkeland current distributions from magnetic field observations by the Iridium constellation // Ann. Geophys. V. 26. P. 671–687. 2008. https://doi.org/10.5194/angeo-26-671-2008
- Bilitza D., Pezzopane M., Truhlik V. et al. The International Reference Ionosphere model: A review and description of an ionospheric benchmark // Rev. Geophys. V. 60. e2022RG000792. 2022. https://doi.org/10.1029/2022RG000792
- Christiansen F., Papitashvili V.O., Neubert T. Seasonal variations of high-latitude field-aligned current system inferred from Ørsted and Magsat observations // J. Geophys. Res. V. 107(A2). 2002. https://doi.org/10.1029/2001JA900104
- Cowley S.W.H., Lockwood M. Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system // Ann. Geophys. V. 10. № 1–2. P. 103–115. 1992.
- Frey H.U., Immel T.J., Lu G., et al. Properties of localized, high latitude, dayside aurora // J. Geophys. Res. V. 108. A4. 8008. 2003. https://doi.org/10.1029/2002JA009332
- Haerendel G., Frey H.U., Chaston C.C. et al. Birth and life of auroral arcs embedded in the evening auroral oval convection: A critical comparison of observations with theory // J. Geophys. Res. V. 117. A12220. 2012. https://doi.org/10.1029/2012JA018128
- Hardy D.A., Holeman E.G., Burke W.J., et al. Probability distributions of electron precipitation at high magnetic latitudes // J. Geophys. Res. V. 113. A06305. 2008. https://doi.org/10.1029/2007JA012746
- Hosokawa K., Kullen A., Milan S. et al. Aurora in the Polar Cap: A Review // Space Sci. Rev. V. 216. 15. 2020. https://doi.org/10.1007/s11214-020-0637-3
- Iijima T., Potemra T.A., Zanetti L.J., Bythrow P.F. Large scale Birkeland currents in the dayside polar region during strongly northward IMF: A new Birkeland current system // J. Geophys. Res. V. 89. P. 7441–7452. 1984. https://doi.org/10.1029/JA089iA09p07441
- Johnson M.L., Murphree J.S., Marklund G.T., Karlsson T. Progress on relating optical auroral forms and electric field patterns // J. Geophys. Res. V. 103. P. 4271–4284. 1998. https://doi.org/10.1029/97JA00854
- Knight S. Parallel electric fields // Planet. Space Sci. V. 21. P. 741–750. 1973. https://doi.org/10.1016/0032-0633(73)90093-7
- Korth H., Anderson B.J., Frey H.U., et. al. Conditions governing localized high-latitude dayside aurora // Geophys. Res. Lett. V. 31. L04806. 2004. https://doi.org/10.1029/2003GL018911
- Kozlovsky A., Turunen T., Massetti S. Field-aligned currents of postnoon auroral arcs // J. Geophys. Res. V. 114. A03301. 2009. https://doi.org/10.1029/2008JA013666
- Leontyev S.V., Lyatsky W.B. Electric field and currents connected with Y-component of interplanetary magnetic field // Planet. Space Sci. V. 22. P. 811–819. 1974. https://doi.org/10.1016/0032-0633(74)90151-2
- Liou K., Mitchell E. Effects of the interplanetary magnetic field y component on the dayside aurora // Geosci. Lett. V. 6. 11. 2019. https://doi.org/10.1186/s40562-019-0141-3
- Lukianova R., Christiansen F. Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents // J. Geophys. Res. V. 111. A03213. 2006. https://doi.org/10.1029/2005JA011465
- Lukianova R., Christiansen F. Modeling of the UT effect in global distribution of ionospheric electric fields // J. Atmos. Solar-Terr. Phys. V. 70. P. 637–645. 2008. https://doi.org/10.1016/j.jastp.2007.08.047
- Lukianova R., Kozlovsky A. IMF By effects in the plasma flow at the polar cap boundary // Ann. Geophys. V. 29. P. 1305‒1315. 2011. https://doi.org/10.5194/angeo-29-1305-2011
- Lukianova R., Uvarov V.M., Coisson P. High-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions // Adv. Space Res. V. 59. № 2. P. 557–570. 2017. https://doi.org/10.1016/j.asr.2016.10.010
- Newell P.T., Feldstein Y.I., Galperin Y.I., Meng C.-I. Morphology of nightside precipitation // J. Geophys. Res. V. 101. A5. P. 10737–10748. 1996. https://doi.org/10.1029/95JA03516
- Nishida A. Interplanetary origin of electric fields in the magnetosphere // Cosmic Electrodyn. V. 2. P. 350–374. 1971.
- Papitashvili V.O., Christiansen F., Neubert T. A new model of field-aligned currents derived from high-precision satellite magnetic field data // Geophys. Res. Lett. V. 29. № 14. 1683. 2002. https://doi.org/10.1029/2001GL014207
- Redmon R.J., Denig W.F., Kilcommons L.M., Knipp D.J. New DMSP database of precipitating auroral electrons and ions // J. Geophys. Res. Space Physics. V. 122. P. 9056–9067. 2017. https://doi.org/10.1002/2016JA023339
- Reichert S. Polar rain // Nat. Phys. V. 20. 1057. 2024. https://doi.org/10.1038/s41567-024-02595-w
- Reistad J.P., Laundal K.M., Østgaard N. et al. Quantifying the lobe reconnection rate during dominant IMF By periods and different dipole tilt orientations // J. Geophys. Res. Space. V. 126. e2021JA029742. 2021. https://doi.org/10.1029/2021JA029742
- Shiokawa K., Yumoto K., Meng C.-I., Reeves G. Broadband electrons observed by the DMSP satellites during storm-time substorms // Geophys. Res. Lett. V. 23. № 18. P. 2529–2532. 2010. https://doi.org/10.1029/96GL01955
- Trondsen T.S., Lyatsky W., Cogger L.L., Murphree J.S. Interplanetary magnetic field By control of dayside auroras // J. Atmos. Solar-Terr. Phys. V. 61. P. 829-840. 1999. https://doi.org/10.1016/S1364-6826(99)00029-2
- Uvarov V.M., Lukianova R.Yu. Numerical modeling of the polar F region ionosphere taking into account the solar wind conditions // Adv. Space Res. V. 56. P. 2563–2574. 2015. https://doi.org/10.1016/j.asr.2015.10.004
- Weimer D.R. Models of high-latitude electric potentials derived with a least error fit of spherical harmonic coefficients // J. Geophys. Res. V. 100. A10. P. 19595–19607. 1995. https://doi.org/10.1029/95JA01755
- Wing S., Gkioulidou M., Johnson J.R., et al. Auroral particle precipitation characterized by the substorm cycle // J. Geophys. Res. - Space Phys. V. 118. P. 1022–1039. 2013. https://doi.org/10.1002/jgra.50160
- Wu J., Knudsen D.J., Gillies D.M., et al. Swarm observation of field-aligned currents associated with multiple auroral arc systems // J. Geophys. Res. - Space Phys. V. 122. P. 10145–10156. 2017. https://doi.org/10.1002/2017JA024439
- Zhang Q.H., Zhang Y.L., Wang C., et al. A space hurricane over the Earth’s polar ionosphere // Nat. Commun. V. 12. 1207. 2021. https://doi.org/10.1038/s41467-021-21459-y
Қосымша файлдар

