CONFORMATIONAL CHANGES IN THE STRUCTURE OF ADSORBED POLYELECTROLYTE CHAINS ON THE CHARGED SURFACE OF A SPHERICAL NANOPARTICLE

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The structure rearrangement of polyelectrolyte shell on the surface of a charged spherical nanoparticle is investigated by methods of statistical theory of macromolecules and molecular dynamics. A mathematical model of conformational changes of adsorbed polyelectrolyte on the surface of a spherical nanoparticle is presented, and radial dependences of the concentration of macrochain links depending on the sign and magnitude of the nanoparticle charge are obtained. Molecular dynamic modeling of polypeptides with different degrees of polyelectrolyte on the surface of a charged spherical gold nanoparticle was performed. When the absolute value of the opposite sign charge on the spherical nanoparticle increased with respect to the charge of the macrochain, the polyelectrolyte shell at the surface of the nanoparticle was dense, while a loose layer of neutral macrochain links was formed at the periphery. On the uniformly charged surface of the spherical nanoparticle, the polyelectrolyte shell gradually swelled with increase in the absolute value of the nanoparticle charge and desorbed the earlier the higher the degree of polyelectrolyticity of the macrochain was.

Авторлар туралы

M. Kucherenko

Orenburg State University

Center for Laser and Information Biophysics Orenburg, Russia

N. Kruchinin

Orenburg State University

Email: kruchinin_56@mail.ru
Center for Laser and Information Biophysics Orenburg, Russia

Әдебиет тізімі

  1. Brown S.D., Nativo P., Smith J. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 4678.
  2. Chen G., Song F., Xiong X., Peng X. // Ind. Eng. Chem. Res. 2013. V. 52. P. 11228.
  3. Adnan N.N.M., Cheng Y.Y., Ong N.M.N. et al. // Polym. Chem. 2016. V. 7. P. 2888.
  4. Kong F.-Y., Zhang J.-W., Li R.-F. et al. // Molecules. 2017. V. 22. P. 1445.
  5. Panicker S., Ahmady I.M., Almehdi A.M. et al. // Applied Organometallic Chemistry. 2019. V. 33. P. e4803.
  6. Holkar A., Toledo J., Srivastava S. // AIChE Journal. 2021. V. 67. P. e17443.
  7. Stornes M., Blanco P.M., Dias R.S. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 628. P. 127258.
  8. Voisin F., Lelong G., Guigner J.M. et al. // Journal of Colloid and Interface Science. 2023. V. 630. P. A. 2023. P. 355.
  9. Huang H., Liu R., Yang J. et al. // Pharmaceutics. 2023. V. 15. P. 1868.
  10. Vairaperumal T., Huang C., Liu P. // ACS Appl. Bio Mater. 2023. V. 6. P. 2591.
  11. Akdeniz B., Wood J.A., Lammertink R.G.H. // Langmuir. 2024. V. 40. P. 5934.
  12. Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517.
  13. Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. // Russian Journal of Physical Chemistry A. 2021. V. 95. P. 362.
  14. Kucherenko M.G., Neyasov P.P., Kruchinin N.Yu. // Russian Journal of Physical Chemistry B. 2023. V. 17. P. 745.
  15. Kruchinin N.Yu., Kucherenko M.G. // Polymer Science Series A. 2023. V. 65. P. 224.
  16. Кучеренко М.Г., Русинов А.П., Кручинин Н.Ю. // Оптика и спектроскопия. 2024. Т. 132. № 5. С. 566.
  17. Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2024. V. 58. № 6. P. 615.
  18. Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2024. V. 21. №3 (49). P. 6–20.
  19. Kruchinin N.Yu., Kucherenko M.G. // Journal of Polymer Research. 2025. V. 32. Is. 3. P. 79.
  20. Гросберг А.Ю., Хохлов А.P. Статистическая физика макромолекул. М.: Наука, 1989.
  21. Абрамовиц М. Справочник по специальным функциям с формулами, графиками и таблицами. М.: Наука, 1979.
  22. Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Наука, 1984.
  23. Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781.
  24. MacKerell A.D. Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586.
  25. Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P. 71.
  26. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281.
  27. Silva J.A., Netz P.A., Meneghetti M.R. // Journal of Chemical Information and Modeling. 2025. V. 65. P. 2730.
  28. Galaz-Araya C., Galaz-Davison P., Cortes-Arriagada D. et al. // ACS Omega. 2025. V. 10. P. 10366.
  29. Li X., Yan Z., Ma Y., Ding H. // ACS Applied Materials & Interfaces. 2025. V. 17. P. 4490.
  30. Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
  31. Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926.
  32. Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171.
  33. Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).