CONFORMATIONAL CHANGES IN THE STRUCTURE OF ADSORBED POLYELECTROLYTE CHAINS ON THE CHARGED SURFACE OF A SPHERICAL NANOPARTICLE
- Авторлар: Kucherenko M.G1, Kruchinin N.Y1
-
Мекемелер:
- Orenburg State University
- Шығарылым: Том 59, № 6 (2025)
- Беттер: 440-450
- Бөлім: НАНОДИСПЕРСНЫЕ СИСТЕМЫ И МАТЕРИАЛЫ
- URL: https://journal-vniispk.ru/0023-1193/article/view/355985
- DOI: https://doi.org/10.7868/S3034543X25060097
- ID: 355985
Дәйексөз келтіру
Аннотация
The structure rearrangement of polyelectrolyte shell on the surface of a charged spherical nanoparticle is investigated by methods of statistical theory of macromolecules and molecular dynamics. A mathematical model of conformational changes of adsorbed polyelectrolyte on the surface of a spherical nanoparticle is presented, and radial dependences of the concentration of macrochain links depending on the sign and magnitude of the nanoparticle charge are obtained. Molecular dynamic modeling of polypeptides with different degrees of polyelectrolyte on the surface of a charged spherical gold nanoparticle was performed. When the absolute value of the opposite sign charge on the spherical nanoparticle increased with respect to the charge of the macrochain, the polyelectrolyte shell at the surface of the nanoparticle was dense, while a loose layer of neutral macrochain links was formed at the periphery. On the uniformly charged surface of the spherical nanoparticle, the polyelectrolyte shell gradually swelled with increase in the absolute value of the nanoparticle charge and desorbed the earlier the higher the degree of polyelectrolyticity of the macrochain was.
Негізгі сөздер
Авторлар туралы
M. Kucherenko
Orenburg State UniversityCenter for Laser and Information Biophysics Orenburg, Russia
N. Kruchinin
Orenburg State University
Email: kruchinin_56@mail.ru
Center for Laser and Information Biophysics Orenburg, Russia
Әдебиет тізімі
- Brown S.D., Nativo P., Smith J. et al. // J. Am. Chem. Soc. 2010. V. 132. P. 4678.
- Chen G., Song F., Xiong X., Peng X. // Ind. Eng. Chem. Res. 2013. V. 52. P. 11228.
- Adnan N.N.M., Cheng Y.Y., Ong N.M.N. et al. // Polym. Chem. 2016. V. 7. P. 2888.
- Kong F.-Y., Zhang J.-W., Li R.-F. et al. // Molecules. 2017. V. 22. P. 1445.
- Panicker S., Ahmady I.M., Almehdi A.M. et al. // Applied Organometallic Chemistry. 2019. V. 33. P. e4803.
- Holkar A., Toledo J., Srivastava S. // AIChE Journal. 2021. V. 67. P. e17443.
- Stornes M., Blanco P.M., Dias R.S. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 628. P. 127258.
- Voisin F., Lelong G., Guigner J.M. et al. // Journal of Colloid and Interface Science. 2023. V. 630. P. A. 2023. P. 355.
- Huang H., Liu R., Yang J. et al. // Pharmaceutics. 2023. V. 15. P. 1868.
- Vairaperumal T., Huang C., Liu P. // ACS Appl. Bio Mater. 2023. V. 6. P. 2591.
- Akdeniz B., Wood J.A., Lammertink R.G.H. // Langmuir. 2024. V. 40. P. 5934.
- Kruchinin N.Yu., Kucherenko M.G. // Surfaces and Interfaces. 2021. V. 27. P. 101517.
- Kruchinin N.Yu., Kucherenko M.G., Neyasov P.P. // Russian Journal of Physical Chemistry A. 2021. V. 95. P. 362.
- Kucherenko M.G., Neyasov P.P., Kruchinin N.Yu. // Russian Journal of Physical Chemistry B. 2023. V. 17. P. 745.
- Kruchinin N.Yu., Kucherenko M.G. // Polymer Science Series A. 2023. V. 65. P. 224.
- Кучеренко М.Г., Русинов А.П., Кручинин Н.Ю. // Оптика и спектроскопия. 2024. Т. 132. № 5. С. 566.
- Kruchinin N.Yu., Kucherenko M.G. // High Energy Chemistry. 2024. V. 58. № 6. P. 615.
- Kucherenko M.G., Kruchinin N.Yu., Neyasov P.P. // Eurasian Physical Technical Journal. 2024. V. 21. №3 (49). P. 6–20.
- Kruchinin N.Yu., Kucherenko M.G. // Journal of Polymer Research. 2025. V. 32. Is. 3. P. 79.
- Гросберг А.Ю., Хохлов А.P. Статистическая физика макромолекул. М.: Наука, 1989.
- Абрамовиц М. Справочник по специальным функциям с формулами, графиками и таблицами. М.: Наука, 1979.
- Никифоров А.Ф., Уваров В.Б. Специальные функции математической физики. М.: Наука, 1984.
- Phillips J.C., Braun R., Wang W. et al. // J. Comput. Chem. 2005. V. 26. P. 1781.
- MacKerell A.D. Jr., Bashford D., Bellott M. et al. // J. Phys. Chem. B. 1998. V. 102. P. 3586.
- Huang J., Rauscher S., Nawrocki G. et al. // Nature Methods. 2016. V. 14. P. 71.
- Heinz H., Vaia R.A., Farmer B.L., Naik R.R. // J. Phys. Chem. C. 2008. V. 112. P. 17281.
- Silva J.A., Netz P.A., Meneghetti M.R. // Journal of Chemical Information and Modeling. 2025. V. 65. P. 2730.
- Galaz-Araya C., Galaz-Davison P., Cortes-Arriagada D. et al. // ACS Omega. 2025. V. 10. P. 10366.
- Li X., Yan Z., Ma Y., Ding H. // ACS Applied Materials & Interfaces. 2025. V. 17. P. 4490.
- Darden T., York D., Pedersen L. // J. Chem. Phys. 1993. V. 98. P. 10089.
- Jorgensen W.L., Chandrasekhar J., Madura J.D. et al. // J. Chem. Phys. 1983. V. 79. P. 926.
- Shankla M., Aksimentiev A. // Nature Communications. 2014. V. 5. P. 5171.
- Chen P., Zhang Z., Gu N., Ji M. // Molecular Simulation. 2018. V. 44. P. 85.
Қосымша файлдар

