Krypton in modern high-purity gas storage systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Krypton is a significant natural resource with great importance for modern industry, medicine, and science. This article considers the issue of preserving the purity of this inert gas of various grades, describes the main processes that can affect the amount of impurities in krypton, and highlights its current applications. Experimental data aimed at elaborating questions about the methodology of surface preparation before contact with high-purity krypton are presented. Moreover, the amount of impurities from the time of container preparation for gas grade 5.8 is evaluated, and dependences of moisture content on the method of preparation and type of surface, which is in contact with high-purity gas, are obtained. Further, statistics on filling containers with argon grade 6.0 and its preliminary preparation are collected. For parameter estimation, cylinders with different types of surfaces are used, both unused and with a service life of more than 10 years. The paper shows various parameters that can affect the purity of krypton. Thanks to the data collected during the experiments, the requirements for future works can be adjusted.

About the authors

Aleksandr V. Fedorov

Bauman Moscow State Technical University

Author for correspondence.
Email: fedorovav@bmstu.ru
ORCID iD: 0009-0001-4799-5469
SPIN-code: 3641-4739
Russian Federation, Moscow

Maksim Yu. Kupriyanov

Bauman Moscow State Technical University

Email: kupriyanov.m@bmstu.ru
ORCID iD: 0000-0003-2180-1221
SPIN-code: 2716-2525

Ph.D. of Engineering Sciences

Russian Federation, Moscow

References

  1. Knunyants IL, editor. Chemical Encyclopedia. Vol. 2. Moscow: Soviet Encyclopedia; 1990. 673 p. (In Russ).
  2. Pakhomov SA. Development of an express low-background method for determination of beta-activity of gas preparations and experience of its practical application in monitoring of atmospheric krypton-85. [dissertation]. Saint Petersburg; 2000. (in Russ). EDN QDISNV
  3. Pronko VV. Ecological monitoring of krypton-85 on the territory of Krasnodar region. [dissertation]. Krasnodar; 2004. (in Russ). EDN NMSXXP
  4. Petryanov-Sokolov IV, Stanzo VV, Chernenko MB. Popular library of chemical elements. Moscow: Nauka; 1972. (In Russ).
  5. Savinov MYu. Research of working processes and development of modern cryogenic technologies in the production of krypton and xenon. [dissertation]. Saint Petersburg; 2008. (in Russ). EDN QEHRCD
  6. Bagaev VG. Combined anesthesia with xenon for children. [dissertation]. Moscow; 2016. (in Russ). EDN RHQYTI
  7. Skobelev VM. Krypton incandescent lamp. The Big Soviet Encyclopedia in 30 vols. Moscow: Soviet Encyclopedia, 1969–1978. (in Russ). EDN SITKHI
  8. Ishlinsky AYu, editor. New Polytechnic Dictionary. Moscow: Bolshaya Rossiyskaya entsiklopediya; 2000. (in Russ). EDN OVINRW
  9. Mechkov BCh. Development and research of electrodes of energy-efficient fluorescent lamps. [dissertation]. Moscow; 1985. (in Russ). EDN NPGWEJ
  10. Keldysh MV Research Center. Rocket engines. (Accessed 13 December 2022) Available from: https://keldysh-space.ru (in Russ).
  11. Gorshkov OA, Muravlev AA, Shagaida AA. Hall and ion plasma engines for spacecraft. Koroteev AS, editor. Moscow: Mashinostroenie; 2008. (in Russ). EDN QNVHXT
  12. Site of Telegraphic Agency for Communication and Message. (Accessed 20 December 2023) Available at: https://tass.ru/armiya-i-opk/15489501?utm_source=yandex.ru&utm_medium=organic&utm_campaign=yandex.ru&utm_referrer=yandex.ru (in Russ).
  13. Shepel EV. Experimental and clinical substantiation of the possibility of using krypton as a working body for gas-plasma coagulation during surgical interventions. [dissertation]. Tver; 2017. (in Russ). EDN DBKKVM
  14. Patent VOIS W02011081612 А1 / 31.12.2009. Bondarenko VL, Grafov AP, Lozitskiy VP, et al. Use of krypton or xenon as an antiviral agent. (Accessed 19 March 2024) Available from: https://patents.google.com/patent/WO2011081612A1/ru (in Russ).
  15. Kussmaul AR. Biological effect of krypton on animals and humans under conditions of increased pressure. [dissertation]. Moscow; 2007. (in Russ). EDN NOPIXB
  16. Rybka DV. Intense spontaneous emission of VUV and UV ranges in nanosecond and microsecond high-current discharges at high pressures. [dissertation]. Tomsk; 2010. (in Russ). EDN QEUFBN
  17. Kozlovsky EA. Mountain Encyclopedia. Vol. 3. Moscow: Soviet Encyclopedia; 1987. (In Russ).
  18. Kolesnikov AV. Optical methods of analysis and development of measuring instruments for microimpurities in argon, krypton and xenon. [dissertation]. Tomsk; 2002. (in Russ). EDN QDQFYF
  19. Chekirda KV. Perfection and research of the state primary standard of length unit. [dissertation]. Saint Petersburg; 2013. (in Russ). EDN SUVLXV
  20. Bondarenko VL, Symonenko YM. Cryogenic rare gas extraction units. Odessa: Publishing Center; 2009. (in Russ). EDN XKOEFX
  21. Ustyugova TG, Kupriyanov MY. Moisture Contamination in High Purity Gas Separation Products. Chem Petrol Eng. 2020;56:371–377. doi: 10.1007/s10556-020-00783-y
  22. Bondarenko VL, Kupriyanov MY, Ustyugova TG. Gas Chromatography in Technology of High-Purity Noble Gases. Chem Petrol Eng. 2019;55:384–391. doi: 10.1007/s10556-019-00635-4
  23. Handbook of Vacuum Science and Technology. Moscow: Technosphere; 2011. (In Russ). doi: 10.1016/b978-012352065-4/50053-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Isotope content in atmospheric air in percentage by volume.

Download (62KB)
3. Fig. 2. Dependence of the amount of impurities on gas purity.

Download (46KB)
4. Fig. 3. Schematic diagram of the unit for thermovacuum preparation of containers for high-purity krypton В. В1–В10, control valves; N2, gaseous nitrogen source.

Download (104KB)
5. Fig. 4. Dependence of the amount of impurities on the preparation time in 5.8-grade krypton.

Download (67KB)
6. Fig. 5. Dependences of moisture content in gas on residual pressure at 10ppm on water.

Download (61KB)
7. Fig. 6. Humidity content in cylinders with argon purity 6.0.

Download (53KB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».