Problems in calculating the ejection coefficient of ejectors in natural gas liquefaction cycles
- Authors: Tikhovidov M.A.1, Navasardyan E.S.1
-
Affiliations:
- Bauman Moscow State Technical University
- Issue: Vol 114, No 2 (2025)
- Pages: 69-76
- Section: Reviews
- URL: https://journal-vniispk.ru/0023-124X/article/view/373833
- DOI: https://doi.org/10.17816/RF685733
- EDN: https://elibrary.ru/LQYJLT
- ID: 373833
Cite item
Abstract
This article examines the relevance of using ejectors in small- and medium-capacity natural gas liquefaction cycles, as they offer a lower-cost and more reliable alternative to turboexpanders. It is emphasized that the main difficulty in their design stems from the fact that traditional calculation methods, such as those of E. Ya. Sokolov and N. M. Singer, are not adapted for working with multicomponent, often two-phase (vapor-liquid) natural gas flows.
The study calculates the ejection coefficient using the method of E. Ya. Sokolov and N. M. Singer, as well as using the Caltec Surface Jet Pump Unit and Ejector Extension v3.0.2 software modules. The obtained calculated values are compared with experimental data obtained at an operating liquefaction plant in the village of Razvilka.
The analysis reveals significant discrepancies (from 28% to 69%) between all calculation models and actual results. Conclusions are drawn regarding the applicability of standard ejector calculation methods, and the main reasons for discrepancies with experimental data are identified. The primary cause of these discrepancies is identified as the lack of consideration of phase transitions (condensation) in the mixing chamber and the thermodynamic properties of the multicomponent mixture in the models. A conclusion is drawn regarding the need to develop a new, adapted calculation method.
About the authors
Mikhail A. Tikhovidov
Bauman Moscow State Technical University
Author for correspondence.
Email: mihail.tihovidov@yandex.ru
Russian Federation, Moscow
Ekaterina S. Navasardyan
Bauman Moscow State Technical University
Email: info@eco-vector.com
SPIN-code: 3164-5098
Cand. Sci. (Techn.)
Russian Federation, MoscowReferences
- Tsegelskii VG. Jet Apparatuses. Moscow: MGTU im. N.E. Baumana; 2017. (In Russ.)
- Sokolov EY, Zinger NM. Jet Apparatuses. Moscow: Energoatomizdat; 1989. (In Russ.)
- Vasil’ev IuN. Theory of a supersonic gas ejector with a cylindrical mixing chamber. In: Blade Machines and Jet Apparatuses: Collection of Articles. Vol. 2. Moscow: Mashinostroenie; 1967. (In Russ.)
- Vasil’ev IuN. Theory of a Gas Ejector with a Cylindrical Mixing Chamber. Moscow: Mashinostroenie; 1971. (In Russ.)
- Antonov AN, Arkharov AM, Arkharov IA, et al. Machines of Low-Temperature Engineering. Cryogenic Machines and Tools. Moscow: MGTU im. N.E. Baumana; 2015. (In Russ.)
- Mil’man OO, Perov VB. Liquefied natural gas in the energy sector. In: Klimenko AV, ed. Ecology, Energy, Energy Saving: Bulletin. Moscow: PAO “Mosenergo”; 2023;(1). (In Russ.)
- Khristianovich SA. On the calculation of an ejector. In: Continuum Mechanics: Collection of Articles. Moscow: Nauka; 1981. (In Russ.)
- Khristianovich SA, Millionshchikov MD, Riabinkov GM, Trebin FA. Application of ejectors in gas gathering networks. In: Continuum Mechanics: Collection of Articles. Moscow: Nauka; 1981. (In Russ.)
- Abramovich GI. Applied Gas Dynamics. Moscow: Nauka; 1991:600. (In Russ.)
- Aleksandrov VYu, Klimovskii KK. Optimal Ejectors (Theory and Calculation). Moscow: Mashinostroenie; 2012. (In Russ.)
- Aleksandrov VYu, Klimovskii KK. Methodology for calculating gas ejectors. Teploenergetika. 2009;(8):31–33. (In Russ.) EDN: KVPXFZ
- Alferov VI, Zaitsev EG, Riabinkov GM. On an engineering method for calculating an ejector taking into account the real properties of the gas. Uchenye Zapiski TsAGI. 1993;24(4):107–112. (In Russ.) EDN: KYVQUX
- Kukanov FA, Mezhirova II. Operation of a gas ejector with different physical parameters of the mixed gases. Uchenye Zapiski TsAGI. 1970;1(4):103–108. (In Russ.) EDN: KYXCFZ
- Aleksandrov VYu, Klimovskii KK. Optimization of multistage gas ejectors. Teploenergetika. 2009;(9):68–72. (In Russ.) EDN: JTYMCD
- Arkadov YuK. A compact gas ejector with a high compression ratio and nozzles arranged in a spiral. Uchenye Zapiski TsAGI. 1984;15(6):35–42. (In Russ.) EDN: MVXHYR
- Sychenkov VA, Panchenko VI, Khaliulin RR. Study of a coaxial gas ejector. Izvestiia Vysshikh Uchebnykh Zavedenii. Aviatsionnaia Tekhnika. 2014;(2):24–28. (In Russ.) EDN: STXXKB
- Krasnosonosova SD. Research of Small-Scale Natural Gas Liquefaction Plants by Entropy-Statistical Method [dissertation]. Moscow; 2016. (In Russ.) EDN: CZWPCB
Supplementary files
