Evaluation of the effect of the heat exchange tube profile on the energy and mass efficiency of the crystallizers

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: One of the important tasks of modern industry is the improvement of heat exchangers (since practically no industry can do without this equipment). One of the most common heat exchangers is “pipe-in-pipe” type devices, which allow the processes of heating, cooling, condensation and crystallization of various working products. Regardless of the process being carried out, the improvement of heat exchangers should primarily be aimed at increasing the heat exchange capacity. One of the ways to increase it is to increase the surface area of heat transfer.

AIMS: A capacitive crystallizer of the “pipe in a pipe” type with ice freezing on the inner surface of the heat exchange pipe is considered as an object of research. A solution for improving the crystallizer is proposed, which allows increasing the heat exchange surface area by changing the profile of the heat exchange pipe.

MATERIALS AND METHODS: As a method of evaluating proposals for improving crystallizers, specific indicators obtained using computer modeling characterizing resource conservation in the manufacture of crystallizers and energy saving during their operation are used.

RESULTS: The crystallizers were evaluated according to the energy and mass efficiency of a typical design, a design with heat transfer intensifiers in the form of round rods fixed on the outer surface of the heat exchange tube and a design with a cross section of the heat exchange tube in the form of an epitrochoid with 8 lobes.

CONCLUSIONS: It is noted that both the presence of intensifier rods and the change in the profile of the heat exchanger tube of the crystallizer contributes to a uniform distribution of the coolant velocity in its inter-tube space. The uniformity of the distribution, in turn, will have a positive effect on the intensity of the ice freezing process. Also, both presented technical solutions improve the considered specific indicators of the energy and mass efficiency of the crystallizers.

About the authors

Varvara V. Chernyavskaya

Moscow Polytechnic University

Author for correspondence.
Email: v_ch20@mail.ru
ORCID iD: 0009-0005-5986-0165
SPIN-code: 9821-3219
Russian Federation, Moscow

Vladimir B. Sapozhnikov

Moscow Polytechnic University

Email: sapojnikov47@mail.ru
ORCID iD: 0009-0002-9252-8437
SPIN-code: 9463-0892

Dr. Sci. (Engineering), Professor

Russian Federation, Moscow

Mariya A. Ugolnikova

Moscow Polytechnic University

Email: set-square@mail.ru
ORCID iD: 0009-0009-2629-3001
SPIN-code: 9583-7252

Cand. Sci. (Engineering)

Russian Federation, Moscow

Ivan Y. Golovanov

Moscow Polytechnic University

Email: igol95@yandex.ru
ORCID iD: 0009-0007-9073-1235
SPIN-code: 3901-7739

Cand. Sci. (Engineering)

Russian Federation, Moscow

References

  1. Popov IA, Makhyanov KhM, Gureev VM. Physical Fundamentals and Industrial Applications of Heat Transfer Enhancement. Heat Transfer Enhancement. Kazan: Tsentr Innovatsionnykh Tekhnologii; 2009:560. (In Russ.) EDN: QMKUGF
  2. Ugolnikova MA, Chernyavskaya VV. Dynamics of water ice formation during the operation of vessel cryoconcentrators. Chem Pet Eng. 2021;57(7-8):561–566. doi: 10.1007/s10556-021-00976-z EDN: RISATM
  3. Sapozhnikov VB, Ugolnikova MA, Chernyavskaya VV. Evaluating the performance of low-temperature liquid separation devices with two-stage refrigeration and pre-cooling. Chem Pet Eng. 2023;59(1-2):134–138. doi: 10.1007/s10556-023-01218-0 EDN: CAYIUO
  4. Lagutkin MG, Baranova EYu, Mishachkin DI, Naumov VN. Increasing efficiency of shell-and-tube heat exchanger taking account of energy consumption reduction. Chem Pet Eng. 2022;57(9-10):713–719. doi: 10.1007/s10556-022-00997-2 EDN: HSJRAR
  5. Lobanov IE. Modeling of flow and heat transfer in pipes with turbulators for viscous heat carriers in the laminar region, as well as in the transition region to turbulent flow. Vestnik Dagestanskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Tekhnicheskie Nauki. 2023;50(3):24–36. (In Russ.) doi: 10.21822/2073-6185-2023-50-3-24-36. EDN: HPYXAA
  6. Gilfanov KhKh, Shakirov RA. Neural network modeling of heat transfer characteristics for surface intensification of heat exchange equipment. Vestnik Kazanskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. A.N. Tupoleva. 2020;76(4):5–11. (In Russ.) EDN: RCHXYM
  7. Solov’ev SV, Chernyshev AV. Modeling of liquid heat transfer in a spherical layer. Iuzhno-Sibirskii Nauchnyi Vestnik. 2019;1(25):114–122. (In Russ.) EDN: AVCAKT
  8. Khodiashov EO, Tiurin MP, Sedliarov OI, Borodina ES. Modeling of a convective heat exchange apparatus to increase its energy efficiency. Izvestiia Vysshikh Uchebnykh Zavedenii. Tekhnologiia Tekstil’noi Promyshlennosti. 2024;3(411):218–225. (In Russ.) doi: 10.47367/0021-3497_2024_3_218 EDN: REYHCX
  9. Osintsev KV, Krasnov IA, Vasil’ev KD, et al. Investigation of the temperature field of heat transfer in a “tube-in-tube” heat exchanger by analytical and numerical methods. Original’nye Issledovaniia. 2022;12(11):12–21. (In Russ.) EDN: SQCLIV
  10. Sister VG, Pushnov AS, Pirogova OV, Karpenko AS. Modern methods for intensifying heat and mass transfer processes in contact apparatus with packing. Khimicheskaia Tekhnologiia. 2018;19(2):81–87. (In Russ.) EDN: YOKBDV
  11. Kagan AM, Sister VG, Pushnov AS, et al. Hydrodynamic method for determining the active surface of dumped packings for carrying out heat and mass transfer processes. Khimicheskaia Tekhnologiia. 2018;19(4):173–177. (In Russ.) EDN: XNQSXR
  12. Konovalov VI, Romanova EV, Koliukh AN. Investigation of the heat transfer process in a finned tubular recuperator. Vestnik TGTU. 2012;18(4):876–880. EDN: OCNMIC
  13. Stepykin AV, Ruzanov SR, Sidyagin AA, et al. Experimental study of the hydraulic resistance of plate modules of a heat and mass transfer device. Chem Pet Eng. 2023;59(7-8):563–569.
  14. Mal’tseva OM. Modeling of ice formation on the cylindrical surface of a capacitive cryoconcentrator. Tekhnika i Tekhnologiia Pishchevykh Proizvodstv. 2016;3(42):118–124. (In Russ.) EDN: WMENDF
  15. Silin AM, Lagutkin MG, Baranova EYu. Reduction of energy consumption for pumping heat carriers while ensuring the required amount of transferred heat in plate heat exchanger. Chem Pet Eng. 2024;59:618–622. doi: 10.1007/s10556-024-01282-0 EDN: SBEFWV
  16. Shapovalov AV, Kidun NM, Nikulina TN, Chernyavskaia VV. Analysis of studies on maximum heat fluxes in thermosiphons with intermediate heat carrier circulation. In: Modern Problems of Mechanical Engineering: Article in the Proceedings of the XIV International Scientific and Technical Conference; 2023; Gomel. Gomel: Gomel’skii Gosudarstvennyi Tekhnicheskii Universitet imeni P.O. Sukhogo; 2023:92–95. (In Russ.) EDN: MORKRP
  17. Zanina KO, Lagutkin MG, Iuritsyna AM, Golovanov IYu. Analysis of finning options for a double-pipe heat exchanger to improve process efficiency. Energo- i Resursosberezhenie: Promyshlennost’ i Transport. 2024;3(48):19–25. doi: 10.35211/2500-0586-2024-3-48-19-25 EDN: EEXGYL
  18. Stepykin AV, Goryunov NS, Malygin LA, et al. Influence of the height of surface microroughness on the wettability of polymer-packed devices. Chem Pet Eng. 2023;59(1-2):86–92. (In Russ.) doi: 10.1007/s10556-023-01211-7 EDN: XDGIJO
  19. Vasiliev PD, Sidyagin AA, Stepykin AV, et al. Influence of the surface structure on the wettability of polymer packing elements in heat- and mass-transfer equipment. Theor Found Chem Eng. 2022;56(2):212–220. doi: 10.1134/S0040579522020166. EDN: VUPZZR

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).