Metodika rascheta linii fazovogo ravnovesiya khladagentov ot troynoy do kriticheskoy tochki


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Within the framework of the method offered the equilibrium line calculation is based on the set of interconsistent equations including the equation of elasticity line ps = ps(Ts) (where ps is the pressure on the elasticity line; Ts is the temperature on the elasticity line) as well as the equations describing the vapor r- = r-(Ts) and the liquid r+ = r+(Ts) branches of saturation (where r is density). At that the equation for r- = r-(Ts) is derived on the basis of the Clayperon-Clausius modified equation that includes “apparent” heat of vaporization r* linked with the heat of vaporization by dependence r = r*(1 - r-/ r+). The line of the phase equilibrium is calculated using the method offered. It meets the mean diameter rule of saturation line fd in accordance with “final” scaling: fd ~ t2b, where b is the critical index of saturation line. The method was tested on the example of the calculation of the phase equilibrium line for R32 at the range of temperatures from triple to critical point. It was shown that the error of ps and r± calculation corresponds to the experimental error of these values in the range mentioned.

作者简介

Sergey Rykov

Университет ИТМО

Email: togg1@yandex.ru
Канд. техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9

Irina Kudryavtseva

Университет ИТМО

Email: togg1@yandex.ru
Канд. техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9

Vladimir Rykov

Университет ИТМО

Email: togg1@yandex.ru
Д-р техн. наук 191002, г. Санкт-Петербург, ул. Ломоносова, д. 9

参考

  1. Кудрявцева И.В., Рыков В.А., Рыков С.В. Асимметричное единое уравнение состояния R134а // Вестник Международной академии холода. 2008. № 2. С. 36-39.
  2. Кудрявцева И.В., Рыков А.В., Рыков В.А. Модифицированное уравнение линии насыщения, удовлетворяющее требованиям масштабной теории // Холодильная техника и кондиционирование. 2013. № 2. С. 3.
  3. Рыков С.В., Кудрявцева И.В., Рыков В.А., Полторацкий М.И., Свердлов А.В. Уравнение состояния хладагента R32 // Холодильная техника. 2016. № 11. С. 34-37.
  4. Рыков С.В., Кудрявцева И.В., Рыков В.А. Физическое обоснование метода псевдокритических точек // Научнотехнический вестник Поволжья. 2014. № 2. С. 44.
  5. Рыков С.В., Кудрявцева И.В., Рыков В.А., Устюжанин Е.Е., Попов П.В., Свердлов А.В. Методика расчета термодинамических свойств 2,3,3,3- тетрафторпропана в диапазоне температур 230…370 К и давлений 0,1…10 МПа. ГСССД 247 - 2016.
  6. Рыков В.А. Анализ закономерностей изменения термодинамических свойств веществ в широком диапазоне параметров состояния, включая окрестность критической точки и метастабильную область: дис.. канд. техн. наук. - Л.: ЛТИХП, 1988. - 275 с.
  7. Устюжанин Е.Е., Шишаков В.В., Абдулагатов И.М., Рыков В.А., Попов П.В. Давление насыщения технически важных веществ: модели и расчеты для критической области // Вестник МЭИ. 2012. № 2. С. 34-43.
  8. Defibaugh D.R., Morrison G., Weber L.A. Termodynamic properties of difluoromethane // J.Chem.Eng.Data. 1994. V. 39. 333-340.
  9. Fan J., Zhao X., Liu Z. Estimation of the vaporization heat // Fluid Phase Equilibria. 2012. V. 313 P. 91-96.
  10. Kim Y. C., Fisher M. E., Orkoulas G. Asymmetric fluid criticality. I. Scaling with pressure mixing // Physical Review E. 2003. М. 67. 061506.
  11. Kudryavtseva I.V., Rykov S.V. A Nonparametric Scaling Equation of State, Developed on the Basis of the Migdal’s Phenomenological Theory and Benedek’s Hypothesis // Russian J. of Physical Chemistry A. 2016. V. 90. № 7. P. 1493-1495.
  12. Kuwabara S., Aoyama H., Sato H., Watanabe K. Vaporliquid coexistence curves in the critical region and the critical temperatures and densities of difluoromethane and pentafluoroethane // J. Chem. Eng. Data. 1995. V.40. № 1. P. 112-116.
  13. Magee J.W. Isochoric p-r-T Measurements on Difluoromethane (R32) from 142 to 396 K and Pentafluoroethane (R125) from 178 to 398 K at Pressures to 35 MPa // Int. J. of Thermophysics. 1996. V. 17. № 4. P. 803-822.
  14. Malbrunot P.F., Meunier P.A., Scatena G.M. Pressurevolumetemperature behavior of difluorometane // J. Chem. Eng. Data. V.13. № 1. P. 13-21.
  15. Outcalt S.L., McLinden M.O. Equations of State for the Thermodynamic Properties of R32 (Difluoromethane) and R125 (Pentafluoroethane) // Int. J. of Thermophysic. 1995. V. 16. №. 1. P.79-89.
  16. Polikhronidi N. G.,·Abdulagatov I.M.,·Batyrova R.G., Stepanov G.V., Ustuzhanin E.E., Wu J.T. Experimental study of the thermodynamic properties of diethyl ether (DEE) at saturation // Int. J. Thermophys. 2011. V.32. P. 559-595.
  17. Sato T., Sato H., Watanabe K. PVT property measurements for difluoropromethane // J.Chem.Eng.Data. 1994. V.39. P. 851-854.
  18. Ustyuzhanin E.E., Shishakov V.V., Abdulagatov I.M., Popov P.V., Rykov V.A., Frenkel M.L. Scaling models of thermodynamic properties on the coexistence curve: problems and some solutions // Russian J. of Physical Chemistry B. 2012. Т. 6. № 8. С. 912-931.
  19. Vorob’yev V. S., Rykov V. A., Ustyuzhanin E. E., Shishakov V. V., Popov P.V., Rykov S. V. Comparison of the scaling models for substance densities along saturation line // Journal of Physics: Conference Series. 2016. V. 774. 012017.
  20. Weber L.A., Silva A.M. Measurements of the vapor pressures of difluoromethane, 1Chloro1,2,2,2tetrafluoroethane, and pentafluoroethane // J. Chem. Eng. Data. 1994. V. 39. P. 808-812.
  21. Weber L.A., Goodwin R.H. Ebulliometric Measurement of the Vapor Pressure of Difluoromethane // J. Chem. Eng. Data 1993. 38. P. 254-256.
  22. Widiatmo J.V., Sato H., Watanabe K. SaturatedLiquid Densities and Vapor Pressures of 1,1,1Trifluoroethane, Difluoromethane, and Pentafluoroethane // J. Chem. Eng. Data 1994. V. 39. P. 304-308.
  23. Zhu M.S., Li J., Wang B.X. Vapor pressure of difluorometane // Int. J. of Termophysics. 1993. V.14. N6. P. 1221-1227.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Rykov S.V., Kudryavtseva I.V., Rykov V.A., 2017

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».