Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 58, № 5 (2017)

Article

Carboxymethyl cellulose- and fluorapatite-coated silver[orthophosphate-bromide] nanostructures for photodegradation of an azo dye from the textile industry

Padervand M.

Аннотация

Visible light photoactive silver[orthophosphate-bromide] loaded on fluorapatite (FA) and carboxymethyl cellulose (CMC) supports were prepared by an ionic liquid-assisted precipitation method and used as effective light driven heterogeneous systems for removal of Acid Blue 92 (AB92) azo dye and E. coli gram-negative bacteria from the wastewaters. The prepared samples were characterized by X-ray diffraction (XRD) powder, diffuse reflectance spectroscopy (DRS), Furrier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption isotherms (BET). The XRD patterns well proved the formation of Ag3PO4 and AgBr photocatalytic crystalline phases of the nanostructures. Besides, the SEM images demonstrated that the photoactive particles were homogenously dispersed on the surface and the average size of the particles is below 90 nm. The antibacterial experiments showed that the products particularly the FA-based photocatalyst can also be utilized as efficient antimicrobial agents. According to the results, the CMC-based photocatalyst was more active during the first time of using while the other one was determined to be promising enough during the recycling tests.

Kinetics and Catalysis. 2017;58(5):493-498
pages 493-498 views

Promotion of iridium complex catalysts for HCOOH dehydrogenation by trace oxygen

Zhan Y., Shen Y., Du Y., Yue B., Zhou X.

Аннотация

Ir complexes are important homogeneous catalysts for formic acid (FA) dehydrogenation. This paper reports that the activity of Ir complexes can be greatly improved through the activation by trace amounts of oxygen. After activation the activity of the heterodinuclear Ir–Ru catalyst increased 18-fold whereas for the mononuclear catalyst a 23-fold increase was observed. Oxygen is the key factor for the activation. But an excessive concentration of oxygen has a negative effect on the activity. There is an optimal concentration of H2O2 for the activation of Ir complex catalysts in HCOOH dehydrogenation. A very low concentration of oxygen (2.4 × 10–6 M) is needed for the activation of the heterodinuclear Ir–Ru catalyst while the mononuclear catalyst requires the presence of oxygen in a much higher concentration (290 × 10–6 M). From the results of the study it can be inferred that the activation of complex catalysts is due to the interplay of chemical and structural changes. These findings may be helpful in the attempts to improve the catalytic activity of homogeneous catalysts, which are widely used in formic acid dehydrogenation, CO2 reduction and in other processes. In addition, this paper indicates that iridium complexes are excellent catalysts for the direct synthesis of H2O2 from the H2 and O2.

Kinetics and Catalysis. 2017;58(5):499-505
pages 499-505 views

Y-type zeolites for the catalytic oxidative degradation of organic azo dyes in wastewater

Alekhina M., Khabirova K., Kon’kova T., Prosvirin I.

Аннотация

Cobalt- and iron-containing catalysts active in the oxidation of organic dyes with hydrogen peroxide have been prepared from granular synthetic NaY and HY zeolites without a binder by ion exchange followed by heat treatment at 350–500°C. It has been demonstrated by X-ray photoelectron spectroscopy that cobalt and iron in these catalysts are in the form of Co2+ and Fe3+ ions on the support surface. The FeHY and CoNaY catalysts are most effective and stable in the oxidation of the anionic dye carmoisine in weakly acidic and alkaline media.

Kinetics and Catalysis. 2017;58(5):506-512
pages 506-512 views

Catalytic effects of cationic nanoparticle (CTABr/NaX/H2O, X = Cl, Br) for the piperidinolysis of phenyl salicylate ions

Khalid K., Zain S., Khan M.

Аннотация

The expression of pseudo-second-order rate constants (kX) for cationic nanoparticle (CN) [CTABr/NaX/H2O, X = Br, Cl, CTABr = cetyltrimethylammonium bromide] catalyzed piperidinolysis-ionized phenyl salicylate (PSa), at constant [CTABr]T, 0.1 M piperidine (Pip), and 35°C, were calculated from the relationship: kobs = (k0 + kX[NaX])/(1 + KX/S[NaX]), in which k0, kX, and KX/S are constant kinetic parameters and kobs represents the pseudo-first-order rate constant for Pip reaction with phenyl salicylate ion in the presence of CN. The source of the large catalytic effect of CN catalyst was shown to be due to the transfer of PSa from pseudo-phase of the CNs to the bulk aqueous phase through X/PSa ion exchange at the surface of the CNs.

Kinetics and Catalysis. 2017;58(5):513-521
pages 513-521 views

Cyclohexane oxidation with an O2–H2 mixture in the presence of a two-component Pt/C–heteropoly acid catalyst and ionic liquids

Kuznetsova L., Kuznetsova N.

Аннотация

Approaches to increase the efficiency of Pt/C–heteropoly acid catalyst in a liquid-phase oxidation of cyclohexane using an O2–H2 mixture were studied. It was shown that small additives of ionic liquid (BMImBr, Bu4NBr, or Bu4NHSO4) significantly improve the catalytic effect of the Pt/C–H3PMo12O40–CH3CN system at 35°C, by slowing the rate of side reactions resulting in water formation, increasing the rate of oxygenate formation, and inhibiting their secondary oxidation reactions. The efficiency of H2 consumption increases from 2 to 18–25%, while the selectivity of cyclohexane conversion is 92–98%. The substitution of one or two Mo(VI) ions by V(V) in the structure of the heteropoly acid decreases these parameters. In the presence of Bu4NHSO4, a Pt/C catalyst can be used many times. During the reaction, the heteropoly acid present in the solution is in a reduced state under the action of the reaction medium and undergoes reversible redox transformations. The nature of the catalytic action of the studied system is explained from the viewpoint of the effect of ionic liquids on the properties of a Pt/C catalyst in activating O2, heteropoly molybdate chemistry, and the known mechanisms of the peroxide oxidation of hydrocarbons.

Kinetics and Catalysis. 2017;58(5):522-532
pages 522-532 views

Catalytic hydrochlorination of acetylene on PdCl2/C supported catalysts: Kinetic isotopic effect of HCl/DCl, stereoselectivity, and mechanism

Krasnyakova T., Nikitenko D., Khomutova E., Mitchenko S.

Аннотация

Two routes of catalytic hydrochlorination of acetylene were found by the isotopic label method for systems with supported palladium K2PdCl4/C and Н2PdCl4/C catalysts: with formation of the products of syn- and anti-addition of the H(D)Cl molecule to the triple bond of acetylene. Two isotopic effects that differ in magnitude were determined for these systems from the reaction kinetics and the ratio of the yields of the nondeuterated and monodeuterated isotopomers of the product, which are due to the participation of the H(D)Cl molecule in the two reaction stages: limiting chloropalladation and rapid protodemetallation. The effective activation energies and kinetic isotope effects coincided within the experimental errors, which suggests that the reaction mechanisms are similar and the active centers of the catalysts in systems with K2PdCl4/C and Н2PdCl4/C are of the same nature.

Kinetics and Catalysis. 2017;58(5):533-540
pages 533-540 views

Synthesis of nano/micro scale ZSM-5 from kaolin and its catalytic performance

Pan F., Lu X., Yan Y., Wang T.

Аннотация

Nano/micro scale ZSM-5 zeolites were synthesized by using natural kaolin as raw material. The effect of particle size on the catalytic performance of ZSM-5 zeolite for the methanol to olefins conversion was evaluated in a fixed-bed reactor. The results indicated the crystal size had a significant effect on the catalytic stability and the products distribution. ZSM-5 with nanosize showed better tolerance to coke formation, longer catalytic lifetime, and higher selectivity to propylene. The selectivity to propylene on nanosized ZSM-5 was on average 4.5% higher than on the submicron sample and 10% higher than on microsized ZSM-5. After the reaction was conducted for 20 h the ZSM-5 catalyst synthesized from kaolin showed longer lifetime and higher propylene selectivity than the sample synthesized with chemical materials The reason can be explained by the occurence of such elements as Fe, P, and especially Ti.

Kinetics and Catalysis. 2017;58(5):541-548
pages 541-548 views

Mechanism of catalytic cycloboration of α-olefins with boron trichloride: the synthesis of hardly obtainable boriranes and the mechanistic DFT study of transmetalation of titanacyclopropane intermediates

Tyumkina T., Khafizova L., Idrisova S., Khusainova L., Khalilov L., Dzhemilev U.

Аннотация

A theoretically justified mechanism of transmetalation of 2-alkyl substituted titanacyclopropanes with BCl3 is proposed based on the DFT calculations of the thermodynamic and activation parameters of possible reaction pathways. Based on the data obtained, phenyl- and alkyldichloroboranes were proposed to be used as transmetalating agents along with BCl3 in the catalytic cycloboration in the presence of Cp2TiCl2 and Mg metal. It was shown that the barely accessible 1-phenyl-2-hexylborirane can be synthesized using PhBCl2.

Kinetics and Catalysis. 2017;58(5):549-555
pages 549-555 views

Catalysis of radical reactions in mixed micelles of surfactants with hydroperoxides

Krugovov D., Pisarenko L., Kasaikina O., Potapova N.

Аннотация

The peculiarities of the catalytic action of cationic surfactants (CSurf) in combination with hydroperoxides on the generation of radicals and the influence of various factors on this process (transition metal compounds, oxygen, and external magnetic field) were considered. In the oxidized hydrocarbons (RH), hydroperoxides (ROOH), which are the primary amphiphilic products of oxidation, form mixed micelles {mROOH…nCSurf} with CSurf, in which fast decomposition of ROOH into radicals occurs and other polar components (metal compounds, inhibitors, etc.) can concentrate, which significantly affects the rate and mechanism of oxidation. The cationic surfactants immobilized on a solid support retain the ability to catalyze the decomposition of hydroperoxides, forming radicals, and to initiate radical oxidation and polymerization. It was found that acetylcholine, which is the most important neurotransmitter that plays an important role in the neuromuscular and cognitive activity of living beings, like cationic surfactants, catalyzes the radical decomposition of hydroperoxides in organic media, and the yield of radicals in this process decreases in a magnetic field and in the presence of oxygen.

Kinetics and Catalysis. 2017;58(5):556-562
pages 556-562 views

Hydrocracking vegetable oil on borate-containing catalysts: Effect of nature of support

Chumachenko Y., Trenikhin M., Talzi V., Gulyaeva T., Paukshtis E.

Аннотация

The structure, texture, and acid properties of platinum catalysts on oxide (Al2O3, ZrO2, ZrO2–Al2O3) and borate-containing supports (B2O3–Al2O3, B2O3–ZrO2) are studied. The catalysts are tested in the process of hydrocracking sunflower-seed oil at 380°C, 4.0 MPa, and a weight stock feed rate of 1.0 h–1. It has been found that aluminum oxide (A) contains the γ-Al2O3 phase, zirconium dioxide (Z) includes 85 and 15 rel. % of the monoclinic (M) and tetragonal (T) phases, respectively, while zirconium dioxide with the addition of 2.5 wt % Al2O3 (ZA) comprises 14 and 86 rel. % of the M–ZrO2 and T–ZrO2 phases, respectively. The B2O3–Al2O3 (BA) and B2O3–ZrO2 (BZ) systems modified with boron oxide (20 wt %) are X-ray amorphous. A Pt/BA catalyst differs from a Pt/A catalyst, while a Pt/BZ catalyst has a larger specific surface area and acidity than Pt/Z and Pt/ZA catalysts and contains Bronsted acidic centers (BACs) along with Lewis acidic centers (LACs). Only LACs are present on the surface of Pt/A, Pt/Z, and Pt/ZA catalysts. The LAC/BAC ratio in Pt/BA and Pt/BZ catalysts is 0.3 and 1.0, respectively. All the catalysts provide complete oil conversion to give C5+ hydrocarbons with a yield of 81.7–87.3 wt %. Pt/A catalyzes mainly decarboxylation and hydrogenation–dehydration reactions, while Pt/Z and Pt/ZA provide decarboxylation. The yield of diesel fraction reaches 71.8–73.9 wt % with an n-alkane content of 94.0–95.9 wt %. One-stage oil hydrocracking with the prevalence of hydrodecarbonylation and hydrogenation–dehydration reactions occurs on Pt/BA and Pt/BZ catalysts for 20 h to give the yield of the diesel fraction of at least 81.4 and 74.4 wt % and the total content of iso-alkanes and cycloalkanes of at least 28.3 and 60.7 wt %, respectively.

Kinetics and Catalysis. 2017;58(5):563-576
pages 563-576 views

Steam reforming of dimethoxymethane, methanol and dimethyl ether on CuO–ZnO/γ-Al2O3 catalyst

Pechenkin A., Badmaev S., Belyaev V., Paukshtis E., Stonkus O., Sobyanin V.

Аннотация

The performance of a СuO–ZnO/γ-Al2O3 catalyst for the reactions of methanol, dimethyl ether (DME) and dimethoxymethane (DMM) steam reforming (SR) to hydrogen-rich gas was studied. The catalyst was found to be active and selective for methanol and DMM SR producing hydrogen-rich gas with low content of CO (<1 vol %). It provided complete conversion of methanol and DMM at 300°C, and hydrogen productivity of, respectively, 15 and 16.5 LH2gcat-1h-1. With the use of physicochemical methods and catalytic experiments, it was shown that the catalyst surface contained the acid sites typical for γ-Al2O3, and CuO–ZnO agglomerates, responsible, respectively, for DMM hydration to methanol and formaldehyde, and SR of these compounds to hydrogen-rich gas.

Kinetics and Catalysis. 2017;58(5):577-584
pages 577-584 views

Promoting effect of potassium and calcium additives to cerium–zirconium oxide catalysts for the complete oxidation of carbon monoxide

Kaplin I., Lokteva E., Golubina E., Maslakov K., Chernyak S., Lunin V.

Аннотация

The effect of potassium and calcium additives on the catalytic activity of the Ce0.8Zr0.2O2 system in the reaction of CO oxidation was studied. With the use of X-ray diffraction analysis, it was found that the Ce0.8Zr0.2O2 and Ce0.8Zr0.2O2–Ca,K samples contained a mixed oxide of cerium and zirconium; the presence of the independent phases of potassium and calcium compounds in the modified system was not detected. With the use of the low-temperature adsorption–desorption of nitrogen, X-ray photoelectron spectroscopy, and temperature-programmed reduction, it was established that the Ce0.8Zr0.2O2–Ca,K system (in spite of the fact that its specific surface area was lower than that of Ce0.8Zr0.2O2) contained more active oxygen on the surface; peroxide and superoxide complexes formed upon the chemisorption of O2 can act as active oxygen species. This can be the reason for a higher efficiency of the Ce0.8Zr0.2O2–Ca,K system in comparison with that of the unmodified oxide. The results obtained indicate that the ash impurities of Ca and K can increase the catalytic activity of the biomorphic mixed oxides Ce0.8Zr0.2O2 prepared with the use of sawdust as a template.

Kinetics and Catalysis. 2017;58(5):585-592
pages 585-592 views

Synthesis and photocatalytic properties of materials based on bismuth silicates

Vodyankin A., Ushakov I., Belik Y., Vodyankina O.

Аннотация

The influence of the preparation technique of bismuth silicate-based catalysts on their formation, phase composition, absorption characteristics, and photocatalytic properties is investigated. Samples the with initial ratio of Bi: Si = 2: 1 are prepared via the hydrothermal method with varied temperature conditions in the hydrothermal aging and calcination stages. The synthesized catalysts demonstrate photocatalytic activity in the decomposition of the methanol equilibrium vapor and visible light-induced decolorization of a methylene blue (MB) aqueous solution.

Kinetics and Catalysis. 2017;58(5):593-600
pages 593-600 views

Development of a Ni–Pd/CeZrO2/Al2O3 catalyst for the effective conversion of methane into hydrogen-containing gas

Kerzhentsev M., Matus E., Rundau I., Kuznetsov V., Ismagilov I., Ushakov V., Yashnik S., Ismagilov Z.

Аннотация

The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.

Kinetics and Catalysis. 2017;58(5):601-609
pages 601-609 views

Effect of the support composition on the physicochemical properties of Ni/Ce1–xLaxOy catalysts and their activity in an autothermal methane reforming reaction

Matus E., Nefedova D., Kuznetsov V., Ushakov V., Stonkus O., Ismagilov I., Kerzhentsev M., Ismagilov Z.

Аннотация

The effect of the Ce1–xLaxOy (x = 0–1, 1.5 ≤ y ≤ 2.0) support composition on the physicochemical properties of supported Ni catalysts and their activity in autothermal methane reforming was studied. The textural and structural characteristics of Ce1–xLaxOy and Ni/Ce1–xLaxOy samples and the process of their reduction in an atmosphere of hydrogen were examined using a set of techniques (low-temperature nitrogen adsorption, X-ray diffraction analysis, transmission electron microscopy, and thermal analysis). It was established that the Ce1–xLaxOy supports (x = 0–0.9) are mesoporous materials containing a fluorite-like solid solution based on cerium dioxide, in which the unit cell parameter increases and the average crystallite size decreases with the mole fraction of La. It was shown that the average size and composition of Ni-containing particles in the Ni/Ce1–xLaxOy catalysts depends on the composition of the support: at x = 0–0.8, a phase of NiO was formed, whereas a phase of LaNiO3 was formed at x = 0.9–1. The dispersity of the active constituent and its stability to agglomeration increased as the mole fraction of La in the Ce1–xLaxOy support was increased from 0 to 0.8, whereas the reduction of Ni-containing oxide particles shifted to the higher temperature region. The Ni/Ce1–xLaxOy catalysts provided high methane conversion (96–100%) and the yield of H2 (35–55%). The yield of hydrogen increased with decreasing the mole fraction of La in the Ce1–xLaxOy support composition; this can be caused by a decrease in the fraction of difficult-to-reduce Nin+ cations due to the weakening of metal–support interactions.

Kinetics and Catalysis. 2017;58(5):610-621
pages 610-621 views

Ethylene production by the oxidative condensation of methane in the presence of MnMW/SiO2 catalysts (M = Na, K, and Rb)

Ismagilov I., Matus E., Popkova V., Kuznetsov V., Ushakov V., Yashnik S., Prosvirin I., Kerzhentsev M., Ismagilov Z.

Аннотация

The samples of MnMW/SiO2 (M = Na, K, and Rb) were synthesized using various synthesis methods under varied heat treatment conditions and their physicochemical properties and activity in the reaction of the oxidative condensation of methane (OCM) were studied for the development of an effective catalyst for the resource-saving process of natural gas conversion into ethylene. It was found that the preparation method exerts an effect on the textural characteristics of the samples and the reducing properties of the cations of manganese and tungsten. It was determined that the composition of a W-containing phase depends on the alkali metal, and a ratio between the polymorphous modifications of SiO2 is controlled by the method of synthesis and the conditions of catalyst heat treatment. It was established that the yield of C2 hydrocarbons in the OCM reaction increased with the use of incipient wetness impregnation instead of the method of mixing with a suspension for catalyst preparation and with an increase in the catalyst heat treatment temperature from 700 to 1000°C. The optimum composition of the catalyst and the condition of its synthesis were found: 2Mn0.8Na3W/SiO2 obtained by the impregnation method and calcined at 1000°C ensured the yield of target products of ~20% with a CH4 conversion of ~35% at a reaction temperature of 850°C.

Kinetics and Catalysis. 2017;58(5):622-629
pages 622-629 views

Supported MgO–V2O5/Al2O3 catalysts for oxidative propane dehydration: Effect of the molar Mg : V ratio on the phase composition and catalytic properties of samples

Sushchenko E., Kharlamova T., Izaak T., Vodyankina O.

Аннотация

The physicochemical properties of V2O5/Al2O3 and MgO–V2O5/Al2O3 supported catalysts (Mg : V = 1 : 1, 2 : 1, and 3 : 2) obtained by consecutive impregnation of the support with solutions of vanadium and magnesium precursors are studied using a complex of mutually complementary methods (XRD, Raman spectroscopy, UV–Vis spectrometry, and TPR-H2). The effect of the formation of surface magnesium vanadates of various composition and structure on the catalytic properties of the supported vanadium oxide catalysts in the oxidative dehydrogenation of propane is studied. The introduction of magnesium in the samples and an increase in its content, accompanied by a change in the structure of the surface vanadium oxide phases from polymeric VO6/VO5 species to surface metavanadate species, magnesium metavanadate, and further to magnesium divanadate, significantly affects their catalytic properties in the reaction of the oxidative dehydrogenation of propane to propylene.

Kinetics and Catalysis. 2017;58(5):630-641
pages 630-641 views

Effect of the metal−support interaction in Ag/CeO2 catalysts on their activity in ethanol oxidation

Grabchenko M., Mamontov G., Zaikovskii V., Vodyankina O.

Аннотация

The interaction of silver with the surface of CeO2 in the Ag/CeO2 catalysts prepared by coprecipitation and impregnation techniques was studied by temperature-programmed reduction, X-ray diffraction, and high-resolution transmission electron microscopy. It was shown that coprecipitation technique led to formation of strong silver–support interaction and the epitaxy of silver particles (d111 = 2.35 Å) on the surface of CeO2 (d111 = 3.1 Å). This provided incresed catalytic activity in the oxidative dehydrogenation of ethanol at relatively low temperatures (a 15% conversion of ethanol with 100% selectivity for the formation of acetaldehyde was reached at 85°C). Above 130°C, the deep oxidation of ethanol to CO2 becomes the predominant direction of a catalytic reaction, and the Ag/CеО2 catalyst obtained by impregnation technique was most active in this region as a consequence of the weaker metal–support interaction.

Kinetics and Catalysis. 2017;58(5):642-648
pages 642-648 views

Properties of Pd–Ag/C catalysts in the reaction of selective hydrogenation of acetylene

Chesnokov V., Chichkan A., Ismagilov Z.

Аннотация

Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.

Kinetics and Catalysis. 2017;58(5):649-654
pages 649-654 views

The synthesis and study of the physicochemical and catalytic properties of composites with the sulfated perfluoropolymer/carbon nanofiber composition

Koskin A., Larichev Y., Lysikov A., Primachenko O., Ivanchev S.

Аннотация

Composites with the sulfated perfluoropolymer (SFP) (Nafion, etc.)—mesoporous support composition (SFP/support)—are promising solid acid catalysts with strong acid sites and very stable sulfo groups towards leaching processes. The effect of the SFP on the carbon nanofiber (CNF) (SFP/CNF) composite synthesis method, as well as the precursors of the acid phase, on the key acid catalyst characteristics (specific surface area and concentration and accessibility of the acid sites) is studied. The possibility of the direct composite synthesis from SO2F-polymer latexes obtained as a result of the water emulsion SFP synthesis (without the intermediate stages of isolating the SO3H form) is shown. The acid phase precursor types which are acceptable for the SFP/CNF composite synthesis (the equivalent polymer weight > 580 g/mol) are selected. The effect of the amount of the supported polymer on the total specific surface area and concentration and accessibility of the composite acid site is investigated. The structure of the synthesized composites is studied (by TEM, SAXS, and isopropanol TPD), and their catalytic activity in the test acetic acid esterification reaction is compared to the catalytic activity of pure polymer samples and acetic acid. It is found that the synthesized SFP/CNF samples outperform commercial SFP/SiO2 samples (SAC, DuPont), as well as the SFP/CNF samples prepared using polymer solutions in the SO3H form, in terms of the catalytic characteristics.

Kinetics and Catalysis. 2017;58(5):655-662
pages 655-662 views

Effect of vanadium compounds on the sulfonation of carbon materials

Larichev Y., Koskin A.

Аннотация

The synthesis of sulfonated carbon materials (SCMs) via the direct sulfonation of carbon nanofibers with sulfuric acid in the presence of vanadium compounds is studied. An efficient sulfiding system (98% H2SO4–NaVO3) providing a high sulfur content in a carbon material without oleum is proposed. It is established that the introduced sulfur exists in samples in the form of sulfo groups located predominantly on the surface. No intrusion of sulfuric acid residues between graphene layers with the formation of clathrates is revealed. It is shown that the surface of a carbon material is partially oxidized with the formation of carbonyl and carboxyl groups. The kinetic activity of the synthesized SCMs in the liquid-phase reaction of acetic acid esterification with ethanol is studied.

Kinetics and Catalysis. 2017;58(5):663-667
pages 663-667 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».