Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves
- 作者: Agafonov G.L.1, Bilera I.V.2, Vlasov P.A.1,3, Zhil’tsova I.V.1, Kolbanovskii Y.A.2, Smirnov V.N.1, Tereza A.M.1
-
隶属关系:
- Semenov Institute of Chemical Physics
- Topchiev Institute of Petrochemical Synthesis
- National Research Nuclear University MEPhI
- 期: 卷 57, 编号 5 (2016)
- 页面: 557-572
- 栏目: Article
- URL: https://journal-vniispk.ru/0023-1584/article/view/162652
- DOI: https://doi.org/10.1134/S0023158416050013
- ID: 162652
如何引用文章
详细
The formation of soot particles in the pyrolysis and oxidation of various aromatic and aliphatic hydrocarbons in argon behind reflected shock waves has been investigated by computational and theoretical methods. The hydrocarbons examined include methane, ethane, propane (aliphatic hydrocarbons with ordinary bonds), acetylene, ethylene, propylene (aliphatic hydrocarbons with multiple bonds), benzene, toluene, and ethylbenzene (simplest aromatic hydrocarbons). Soot formation in the pyrolysis and oxidation of both aromatic and aliphatic hydrocarbons can be simulated in detail within a unified kinetic model. The predictive power of the unified kinetic model has been verified by directly comparing the calculated kinetic data for the formation of products and reactive radicals in the pyrolysis and oxidation of various hydrocarbons to the corresponding experimental data. In all calculations, all the kinetic parameters of the unified kinetic model were strictly fixed. A good quantitative fit between the data calculated via the unified kinetic model and experimental data has been attained.
作者简介
G. Agafonov
Semenov Institute of Chemical Physics
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
I. Bilera
Topchiev Institute of Petrochemical Synthesis
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
P. Vlasov
Semenov Institute of Chemical Physics; National Research Nuclear University MEPhI
编辑信件的主要联系方式.
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991; Moscow, 115409
I. Zhil’tsova
Semenov Institute of Chemical Physics
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
Yu. Kolbanovskii
Topchiev Institute of Petrochemical Synthesis
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
V. Smirnov
Semenov Institute of Chemical Physics
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
A. Tereza
Semenov Institute of Chemical Physics
Email: iz@chph.ras.ru
俄罗斯联邦, Moscow, 119991
补充文件
