Tomographic methods for studying the upper atmosphere and near-Earth space: current state and development prospects

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review examines the physical and mathematical formulations of the tomography problem in relation to remote sensing of the atmosphere and near-Earth space. Special attention is given to ionospheric sensing using satellite beacon signals from low-orbit (Parus/Transit/Cassiope, etc.), medium-orbit, and high-orbit (GPS/GLONASS and new global satellite navigation systems) satellites. The capabilities and limitations of 2D low-orbit and 4D high-orbit ionospheric radio tomography methods are discussed, along with the results of radiotomographic reconstructions of electron density distribution at various latitudes under both natural and artificial disturbances. A separate focus is placed on studying small-scale ionospheric irregularities based on satellite signal amplitude scintillation data, as well as challenges in implementing such sensing schemes at high latitudes using GPS/GLONASS signals. Besides, the prospects of tomographic systems for upper atmosphere sensing are discussed, considering the significant reduction in the number of low-orbit satellites, the potential installation of satellite beacons on new platforms (CubeSat), and the use of radio tomography methods in ultraviolet tomography of the upper atmosphere. The first results obtained using the dual-frequency (150/400 MHz) coherent signal transmitter MAYAK onboard the satellites of the Russian “Ionosphere” project are presented.

About the authors

A. M. Padokhin

Lomonosov Moscow State University, Physics Department; Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Moscow, Russia; Troisk, Moscow, Russia

A. A. Chernyshov

Space Research Institute of the Russian Academy of Sciences

Email: achernyshov@cosmos.ru
Moscow, Russia

E. S. Andreeva

Lomonosov Moscow State University, Physics Department

Moscow, Russia

M. O. Nazarenko

Lomonosov Moscow State University, Physics Department

Moscow, Russia

S. E. Andreevsky

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences; Space Research Institute of the Russian Academy of Sciences

Troisk, Moscow, Russia; Moscow, Russia

M. M. Mogilevsky

Space Research Institute of the Russian Academy of Sciences

Moscow, Russia

References

  1. Зеленый Л.М., Веселовский И.С. Плазменная гелиогеофизика. Москва: Физматлит, 2008.
  2. Kelley M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics. 2nd ed. San Diego: Academic Press, 2009.
  3. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 1988.
  4. Гуревич В. Нелинейные явления в ионосфере // Успехи физических наук. 2007. Т. 177. № 11. С. 1145–1177.
  5. Streltsov A.V., Berthelier J.-J., Chernyshov A.A. et al. Past, Present and Future of Active Radio Frequency Experiments in Space // Space Science Reviews. 2018. V. 214. Iss. 118. P. 1–30. https://doi.org/10.1007/s11214-018-0549-7
  6. Молчанов А. Низкочастотные волны и индуцированные излучения в околоземной плазме. Москва: Наука, 1985.
  7. Петрукович А.А., Могилевский М.М., Чернышов А.А. и др. Некоторые аспекты магнитосферно-ионосферных связей // Успехи физических наук. 2015. Т. 185. № 6. С. 649–654. https://doi.org/10.3367/UFNe.0185.201506i.0649
  8. Альперт Я.Л. Распространение радиоволн и ионосфера. Москва: Изд-во АН СССР, 1960.
  9. Казаринов Ю.М. Радиотехнические системы. Москва: Академия, 2008. 592 с.
  10. Манаев В.И. Основы радиоэлектроники. Москва: Радио и связь, 1990. 511 с.
  11. Альперт Я.Л. Статистический характер структуры ионосферы // Успехи физических наук. 1953. Т. 49. № 1. С. 49–91.
  12. Ясюкевич Ю.В., Сыроватский С.В., Падохин А.М. и др. Точность позиционирования GPS в различных режимах при активном воздействии на ионосферу мощным КВ-излучением нагревного стенда СУРА // Известия высших учебных заведений. Радиофизика. 2019. Т. 62. № 12. С. 906–919.
  13. Astafyeva E., Yasyukevich Y., Maksikov A. et al. Geomagnetic storms, superstorms, and their impacts on GPS-based navigation systems // Space Weather. 2014. V. 12. Iss. 7. P. 508–525. https://doi.org/10.1002/2014SW001072
  14. Chernyshov A. A., Miloch W. J., Jin Y. et al. Relationship between TEC jumps and auroral substorm in the high-latitude ionosphere // Scientific Reports. 2020. V. 10. Iss. 6363. https://doi.org/10.1038/s41598-020-63422-9
  15. Захаров В.И., Чернышов А.А., Милох В. и др. Влияние ионосферы на параметры навигационных сигналов GPS во время геомагнитной суббури // Геомагнетизм и аэрономия. 2020. Т. 60. № 6. С. 769–782. https://doi.org/10.31857/S0016794020060152
  16. Afraimovich E.L., Astafyeva E.I., Demyanov V.V. et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena // J. Space Weather and Space Climate. 2013. V. 3. Iss. A27. https://doi.org/10.1051/swsc/2013049
  17. Kotova D.S., Sinevich A.A., Chernyshov A.A. et al. Strong turbulent flow in the subauroral region in the Antarctic can deteriorate satellite-based navigation signals // Scientific Reports. 2025. V. 15. Iss. 3458. https://doi.org/10.1038/s41598-025-86960-6
  18. Patil A.S., Nade D.P., Taoti A. et al. A Brief Review of Equatorial Plasma Bubbles // Space Science Reviews. 2023. V. 219. Iss. 16. P. 1–25. https://doi.org/10.1007/s11214-023-00958-y
  19. Otsuka Y. Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere // Progress in Earth and Planetary Science. 2018. V. 5. Iss. 57. P. 1–15. https://doi.org/10.1186/s40645-018-0212-7
  20. Мандельштам Л.И., Папалекси Н.Д. Новейшие исследования распространения радиоволн вдоль земной поверхности. М.: Гостехиздат, 1945.
  21. Альперт Я.Л. Распространение электромагнитных волн и ионосфера. Москва: Наука, 1972.
  22. Куницын В.Е., Терещенко Е.Д., Андреева Е.С. Радиотомография ионосферы. Москва: Физматлит, 2007.
  23. Iyer H., Hirsava K. Seismic Tomography: Theory and Practice. London: Chapman and Hall, 1993.
  24. Munk W., Worcester P., Wunsch C. Ocean Acoustic Tomography. Cambridge: Cambridge University Press, 1995.
  25. Davies K. Ionospheric Radio. London: Peter Peregrinus Ltd, 1990.
  26. Austen J.R., Franke S.J., Liu C.H. Ionospheric imaging using computerized tomography // Radio Science. 1988. V. 23. Iss. 3. P. 299–307.
  27. Andreeva E.S., Galinov A.V., Kunitsyn V.E. et al. Radiotomographic reconstruction of ionization dip in the plasma near the Earth // JETP Letters. 1990. V. 52. Iss. 3. P. 145–148.
  28. Pryse S.E. Radio Tomography: A New Experimental Technique // Surveys in Geophysics. 2003. V. 24. Iss. 1. P. 1–38.
  29. Bust G.S., Mitchell C.N. History, current state, and future directions of ionospheric imaging // Reviews of Geophysics. 2008. V. 46. Iss. RG1003.
  30. Yizengaw E., Moldwin M.B., Dyson P.L. et al. First tomographic image of ionospheric outflows // Geophysical Research Letters. 2006. V. 33. Iss. L20102.
  31. Prol F., Hoque M., Ferreira A. Plasmasphere and topside ionosphere reconstruction using METOP satellite data during geomagnetic storms // J. Space Weather and Space Climate. 2021. V. 11. Iss. 5.
  32. Tereshchenko E.D., Kozlova M.O., Kunitsyn V.E. et al. Statistical tomography of subkilometer irregularities in the high-latitude ionosphere // Radio Science. 2004. V. 39. Iss. RS1S35.
  33. Dymond K.F., Budzien S.A., Hei M.A. Ionospheric-thermospheric UV tomography: 1. Image space reconstruction algorithms // Radio Science. 2017. V. 52. P. 338–356.
  34. Hei M.A., Budzien S.A., Dymond K.F. et al. Ionospheric-thermospheric UV tomography: 3. A multisensor technique for creating full-orbit reconstructions of atmospheric UV emission // Radio Science. 2017. V. 52. P. 896–916.
  35. Nesterov I.A., Kunitsyn V.E. GNSS radio tomography of the ionosphere: The problem with essentially incomplete data // Advances in Space Research. 2011. V. 47. Iss. 10. P. 1789–1803.
  36. Mannucci A.J., Wilson B.D., Yuan D.N. et al. A global mapping technique for GPS-derived ionospheric total electron content measurements // Radio Science. 1998. V. 33. Iss. 3. P. 565–582.
  37. Fridman S.V., Nickisch L.J., Hausman M. et al. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels // Radio Science. 2016. V. 51. P. 176–183.
  38. Kotova D., Ovodenko V., Yasyukevich Y. et al. Efficiency of updating the ionospheric models using total electron content at mid- and sub-auroral latitudes // GPS Solutions. 2020. V. 24. Iss. 25.
  39. Foster J.C., Buonsanto M.J., Holt J.M. et al. Russian-American tomography experiment // International Journal of Imaging Systems and Technology. 1994. V. 5. Iss. 2. P. 148–159.
  40. Yeh K.C., Franke S.J., Andreeva E.S. et al. An investigation of motions of the equatorial anomaly crest // Geophysical Research Letters. 2001. V. 28. Iss. 24. P. 4517–4520.
  41. Kunitsyn V., Andreeva E., Frolov V. et al. Sounding of HF heating induced artificial ionospheric disturbances by navigational satellite radio transmissions // Radio Science. 2012. V. 47. Iss. RS0L15.
  42. Андреева Е.С., Гохберг М.Б., Куницын В.Е. и др. Радиотомографическая регистрация возмущений ионосферы от наземных взрывов // Косм. исслед. 2001. Т. 39. № 1. C. 13–17.
  43. Куницын В.Е., Нестеров И.А., Шалимов С.Л. Мегаземлетрясение в Японии 11 марта 2011 г.: регистрация ионосферных возмущений по данным GPS // Письма в ЖЭТФ. 2011. Т. 94 № 8. С. 657–661.
  44. Косов А.С., Чернышов A.A., Могилевский М.М. и др. Космический эксперимент по измерению ионосферных задержек сигнала ИЗРС (ионосферные задержки радиосигнала) // Исследование Земли из космоса. 2018. № 9. С. 1282–1290. https://doi.org/10.31857/S020596140003364–1
  45. Bernhardt P.A., Dymond K.F., Picone J.M. et al. Improved radio tomography of the ionosphere using EUV/optical measurements from satellites // Radio Science. 1997. V. 32. Iss. 5. P. 1965–1972.
  46. Mitchell C.N., Spencer P.S. A three-dimensional time-dependent algorithm for ionospheric imaging using GPS // Annales Geophysicae. 2003. V. 46. P. 687–696.
  47. Scherliess L., Schunk R.W., Sojka J.J. et al. Utah State University Global Assimilation of Ionospheric Measurements Gauss-Markov Kalman filter model of the ionosphere: Model description and validation // J. Geophysical Research. 2006. V. 111. Iss. A11315.
  48. Куницын В.Е., Терещенко Е.Д., Андреева Е.С. и др. Спутниковое радиозондирование и радиотомография ионосферы // Успехи физических наук. 2010. Т. 180. С. 548–553. https://doi.org/10.3367/UFNr.0180.201005k.0548
  49. Chernyshov A.A., Chugunin D.V., Mogilevsky M.M. et al. Studies of the ionosphere using radiophysical methods on ultra-small spacecrafts // Acta Astronautica. 2020. V. 167. P. 455–459. https://doi.org/10.1016/j.actaastro.2019.11.031
  50. Чернышов А.А., Чугунин Д.В., Могилевский М.М. и др. Подходы к исследованию мультимасштабной структуры ионосферы с использованием наноспутников // Геомагнетизм и аэрономия. 2016. Т. 56. № 1. С. 77–85. https://doi.org/10.7868/S0016794016010041
  51. Чернышов А.А., Чугунин Д.В., Могилевский М.М. и др. Изучение неоднородной структуры ионосферы при помощи одновременных измерений наноспутниками стандарта CubeSat // Известия ВУЗов. Приборостроение. 2016. Т. 59. № 6. С. 443–449.
  52. Attrill G., Nicholas A., Routledge G. et al. Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE), In situ and Remote Ionospheric Sensing (IRIS) suite // J. Space Weather and Space Climate. 2021. V. 11. Iss. 16.
  53. Petrukovich A., Моgilevskii M., Kozlov I. et al. Monitoring of Physical Processes in Upper Atmosphere, Ionosphere and Magnetosphere in Ionosphere Space Missions // EPJ Web of Conferences. 2021. V. 254. P. 02010. https://doi.org/10.1051/epjconf/202125402010
  54. Андреева Е.С., Назаренко М.О., Нестеров И.А., и др. Использование одноточечного приема сигналов низкоорбитальных спутниковых радиомаяков для локальной оценки ионосферных параметров // Изв. вузов. Радиофизика. 2020. Т. 63. № 11. C. 942–957.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».