Litter Production and Decomposition in Dry Forestsof East Nusa Tenggara, Indonesia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This 12-month long study explores the litterfall production and decomposition at four different sites in tropical dry forests of East Nusa Tenggara, Indonesia. The total litterfall, leaf litter and branch litter production values were found to be significantly different (p < 0.05) at all sites. The production of total litterfall, leaf litter, and branch litter was greater in Binafun (2778.125 g∙m–2∙year–1 and 2453.125 g∙m–2∙yr–1) and Bonmuti (300.437 g∙m–2∙yr–1). The annual mean litterfall decomposition rate followed the order of Binafun < Letkole < Bonmuti < Oelbanu (p < 0.05), which positively correlated with the monthly mean precipitation, mean humidity, and mean temperature. The turnover rate calculation indicated that the forest floor was replaced every year with a turnover time of 1.083 years.

About the authors

A. A. Almulqu

Department of Forestry, State Agricultural Polytechnic of Kupang; Department of Forestry, State Agricultural Polytechnic of Kupang; Department of Forestry, State Agricultural Polytechnic of Kupang

Email: ahmadalmulqu@yahoo.com
East Nusa Tenggara, Indonesia; East Nusa Tenggara, Indonesia; East Nusa Tenggara, Indonesia

D. Suratman

Department of Mathematics Education, Faculty of Teacher Training and Education, University of Tanjungpura

Email: ahmadalmulqu@yahoo.com
West Kalimantan, Indonesia

M. Halkis

Defence University

Email: ahmadalmulqu@yahoo.com
West Java, Indonesia

M. Patabang

Bogor Agricultural University

Email: ahmadalmulqu@yahoo.com
West Java, Indonesia

E. Renoat

Department of Forestry, State Agricultural Polytechnic of Kupang

Email: ahmadalmulqu@yahoo.com
East Nusa Tenggara, Indonesia

F. X. Dako

Department of Forestry, State Agricultural Polytechnic of Kupang

Email: ahmadalmulqu@yahoo.com
East Nusa Tenggara, Indonesia

A. Hafid

Faculty of Forestry, University of Tadulako

Author for correspondence.
Email: ahmadalmulqu@yahoo.com
Central Sulawesi, Indonesia

References

  1. Aber J.D., Melillo J.M., Nadelhoffer K.J., Paster J., Boo-ne R.D. Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems // Ecology Application. 1991. V. 1. P. 303–315. https://doi.org/10.2307/1941759
  2. Aerts R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship // Oikos. 1997. V. 79. P. 439–449.
  3. Ahirwal J., Saha P., Nath A., Nath A.J., Deb S., Sahoo U.K. 2021. Forests litter dynamics and environmental patterns in the Indian Himalayan region // Forest Ecology and Management. 2021. V. 499. Paper 119612.
  4. Anderson J.M., Swift M.J. 1983. Decomposition in tropical forests // Sutton S.L., Whitmore T.C., Chadwick A.C. (Eds). Tropical Rain Forest: Ecology and Management. Oxford: Blackwell Scientific, 2003. P. 287–309.
  5. Apriyanto E., Hidayat F., Nugroho P.B.A., Tarigan I. 2021. Litterfall production and decomposition in three types of land use in Bengkulu protection forest // Planta Tropika: J. Agrosains. 2021. V. 9. P. 35–41. https://doi.org/10.18196/pt.v9i1.4019
  6. BPS 2016. Kupang Regency in figures. BPS – Statistics of Kupang Regency. Kupang. 284 p. (in Indonesian).
  7. Brown S., Lugo A.E. 1982. The storage and production of organic matter in tropical forests and their role in the global carbon cycle // Biotropica. 1982. V. 14. P. 61–187.
  8. Capellesso E.S., Scrovonski K.L., Zanin E.M. et al. Effects of forest structure on litter production, soil chemical composition and litter-soil interactions // Acta Botanica Brasilica. 2016. V. 30. P. 329–335.
  9. Chakravarty S., Rai P., Pala N.A., Vineeta V., Shukla G. Litter production and decomposition in tropical forest // Bhadouria R., Tripathi S., Srivastava P., Singh P. (Eds). Handbook of Research on the Conservation and Restoration of Tropical Dry Forests. Hershey PA USA: IGI Global, 2019. 465 p.
  10. Eaton J.S., Likens G.E., Bormann F.H. Throughfall and stemflow chemistry in a northern hardwood forest // Journal of Ecology. 1973. V. 61. P. 495–508.
  11. Facelli J.M., Pickett S.T.A. Plant litter: its dynamics and effects on plant community structure // The Botanical Review. 1991. V. 57. P. 1–32. https://doi.org/10.1007/BF02858763
  12. Falconer G.J., Wright J.W., Beall H.W. The decomposition of certain types of fresh litter under field conditions // American Journal of Botany. 1933. V. 20. P. 196–203.
  13. Fekete I., Varga C., Biró B. et al. The effects of litter production and litter depth on soil microclimate in a central European deciduous forest // Plant Soil. 2016. V. 398. P. 291–300.
  14. Fioretto A., Di Nardo C., Papa S., Fuggi A. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem // Soil Biology and Biochemistry. 2005. V. 37. P. 1083–1091. https://doi.org/10.1016/j.soilbio.2004.11.007
  15. Fisher L., Moeliono I., Wodicka S. The Nusa Tenggara uplands, Indonesia: Multiple-site lessons in conflict management. Chapter 3 // Buckles D (Ed.). Cultivating Peace: Conflict and Collaboration in Natural Resource Management. International Development Research Centre and World Bank, 1999. P. 1–12.
  16. Garkoti S.C., Singh S.P. Forest floor mass, litterfall and nutrient return in Central Himalayan high altitude forests // Plant Ecology. 1995. V. 120. P. 33–48. https://doi.org/10.1007/BF00033456
  17. Giweta M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review // J. оf Ecology and Environment. 2020. V. 44. P. 1–9. https://doi.org/10.1186/s41610-020-0151-2
  18. Goma-Tchimbakala J., Bernhard-Reversat F. Comparison of litter dynamics in three plantations of an indigenous timber-tree species (Terminalia superba) and a natural tropical forest in Mayombe, Congo // Forest Ecology and Management. 2006. V. 229. P. 304–313. https://doi.org/10.1016/j.foreco.2006.04.009
  19. González-Rodríguez H., López-Hernández J.M., Ramírez-Lozano R.G. et al. Litterfall deposition and nutrient return in pine-oak forests and scrublands in northeastern Mexico // Madera y Bosques. 2019. V. 25. Paper e2531514.
  20. González I., Sixto H., Rodríguez-Soalleiro R., Oliveira N. Nutrient contribution of litterfall in a short rotation plantation of pure or mixed plots of Populus alba L. and Robinia pseudoacacia L. // Forests. 2020. V. 11. Paper 1133.
  21. Grierson P.F., Addams M.A. Nutrient cycling and growth in forest ecosystems of south western Australia: Relevance to agricultural landscapes // Agroforestry Systems. 1999. V. 45. P. 215–244. https://doi.org/10.1023/A:1006267604313
  22. Hanpattanakit P., Chidthaisong A. Litter production and decomposition in dry dipterocarp forest and their responses to climatic factors // GMSARN International Journal. 2012. V. 6. P. 169–174.
  23. Hardiwinoto S., Arianto D., Okimori Y. Litter production and nutrient input of logged over forest in the tropical rain forest of Jambi, Sumatra // Proceeding of the FORTPOP’ 96: Tropical Forestry in the 21st century. Kasetsart University, Bangkok, 1996. P. 48–58.
  24. Huang Y., Ma K., Niklaus P.A., Schmid B. Leaf-litter overyielding in a forest biodiversity experiment in subtropical China // Forest Ecosystems. 2018. V. 5. P. 1–9.
  25. John D.M. Accumulation and decay of litter and net production of forest in tropical West Africa // Oikos. 1973. V. 24. P. 430–435. https://doi.org/10.2307/3543819
  26. Kuswanto H., Puspa A.W., Ahmad I.S., Hibatullah F. 2021. Drought analysis in East Nusa Tenggara (Indonesia) using regional frequency analysis // Hindawi: The Scientific World J.. 2021. P. 1–10. https://doi.org/10.1155/2021/6626102
  27. Lal R., Follet R.F., Kimble J.M. Achieving soil carbon sequestration in the United States: A challenge to the policy makers // Soil Science. 2003. V. 168). P. 827–845. https://doi.org/10.1097/01.ss.0000106407.84926.6b
  28. Landsberg J.J., Gower S.T. Applications of Physiological Ecology to Forest Management. New York: Academic Press, 1997. 354 p.
  29. Ling A.H. Litter production and nutrient cycling in mature cocoa plantation on island soils of Peninsular Malaysia // Puushparajah E., Chew P.S. (Eds). Proceedings of the International Conference on Cocoa and Coconuts, Kuala Lumpur. Kuala Lumpur: Incorporated Society of Planters, 1986. P. 451–465.
  30. Muoghalu J.I., Odiwe A.I. Litter production and decomposition in cacao (Theobroma cacao) and kolanut (Cola nitida) plantation, Kuala Lumpur // Ecotropica. 2011.: V. 17. P. 79–90.
  31. Nonghuloo I.M., Kharbhih S., Suchiang B.R. et al. Production, decomposition and nutrient contents of litter in subtropical broadleaved forest surpass those in coniferous forest, Meghalaya // Tropical Ecology. 2020. V. 61. P. 5–12.
  32. Odiwe A.I., Muoghalu J.I. 2003. Litterfall dynamics and forest floor litter as influenced by fire in a secondary lowland rain forest in Nigeria // Tropical Ecology. 2003. V. 44. P. 243–251.
  33. Olson J.S. Energy Storage and Balance of Producers and Decomposers in Ecological Systems // Ecology. 1963. V. 44. P. 322–331. https://doi.org/10.2307/1932179
  34. Owusu-Sekyere E., Cobbina J., Wakatsuki T. Nutrient cycling in primary, secondary forests and cacao plantation in the Ashanti Region, Ghana // West Africa J. of Applied Ecology. 2006. V. 9. P. 10–18. https://doi.org/10.4314/wajae.v9i1.45680
  35. Pascal J.-P. 1988. Wet Evergreen Forests of the Western Ghats of India: Ecology, Structure, Floristic Composition and Succession. Travaux de la section scientifique et technique no 20 bis, Institut Français de Pondichéry, Inde. 345 p.
  36. Sreekala N.V., Mercy G.P.S., John R., Nair R.V. Seasonal variation in elemental composition of cocoa litter under shaded and open conditions // J. of Tropical Agriculture. 2001. V. 39. P. 186–189.
  37. Starr M., Saarsalmi A., Hokkanen T., Merilä P., Helmisaa-ri H.S. Models of litterfall production for Scots pine (Pinus sylvestris L.) in Finland using stand, site and climate factors // Forest Ecology Management. 2005. V. 205. P. 215–225. https://doi.org/10.1016/j.foreco.2004.10.047
  38. Stohlgren T.J. Litter dynamics in two Sierran mixed conifer forests. I. Litterfall and decomposition rates // Canadian J. of Forest Research. 1988. V. 18. P. 1127–1135. https://doi.org/10.1139/x88-174
  39. Sundarapandian S.M., Swamy P.S. 1999. Litter production and leaf-litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India // Forest Ecology and Management. 1999. V. 123. P. 231–244. https://doi.org/10.1016/S0378-1127(99)00062-6
  40. Vitousek P.M. 1984. Litterfall, nutrient cycling, and nutrient limitation in tropical forests // Ecology. 1984. V. 65. P. 285–298. https://doi.org/10.2307/1939481
  41. Vivanco L., Austin A.T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina // J. of Ecology. 2008. V. 96. P. 727–736. https://doi.org/10.1111/j.1365-2745.2008.01393.x
  42. Vogt K.A., Grier C.C., Vogt D.J. Production, turnover, and nutrient dynamics of above- and belowground detritus of world forests // Advances in Ecological Research. 1986. V. 15. P. 303–377. https://doi.org/10.1016/S0065-2504(08)60122-1
  43. Webster J.R., Benfield E.F. Vascular plant breakdown in freshwater ecosystems // Annual Review of Ecology and Systematics. 1986. V. 17. P. 567–594. https://doi.org/10.1146/annurev.es.17.110186.003031
  44. Yang Y.H., Luo Y.Q. Carbon: Nitrogen stoichiometry in forest ecosystems during stand development // Global Ecology and Biogeography. 2011. V. 20. P. 354–361. https://doi.org/10.1111/j.1466-8238.2010.00602.x
  45. Yang Y.S., Guo J.F., Chen G.S. et al. 2004. Litterfall, nutrient return, and leaf-litter decomposition in four plantations compared with a natural forest in subtropical China // Annal of Forest Science. 2004. V. 61. P. 465–476. https://doi.org/10.1051/forest:2004040

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».