Change of solution composition during it migration through the sedimentary cover in the center of the modern hydrothermal system (Juan de Fuca Ridge, Pacific Ocean, Hole ODP 858B)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article presents the results of studying the change of the composition of the hydrothermal solution during its migration through the Pleistocene sediments from the Hole ODP 858B 38.6 m deep, which was drilled in the northern segment of the Middle Valley of the Juan de Fuca Ridge, in the Dead Dog hydrothermal field, in 20 m from the hydrothermal source with temperature 276°C. The influence of sediments of the Units I, IIB, IID from this hole on the change in the composition of the solution during the solution-sediment interaction has been established. The greatest influence on the composition of the solution occurred during its interaction with the sediments of the Units IIB and IID under high-temperature conditions (200–350°C), which is expressed in the enrichment of the solution with a large amount of chemical elements. A possible change in the composition of the solution is shown in the process of solution-sediment interaction during its migration through the entire sedimentary cover with a thickness of 250–300 m.

Full Text

Restricted Access

About the authors

V. B. Kurnosov

Geological Institute of the RAS

Author for correspondence.
Email: vic-kurnosov@rambler.ru
Russian Federation, Moscow

Yu. I. Konovalov

Geological Institute of the RAS

Email: vic-kurnosov@rambler.ru
Russian Federation, Moscow

O. I. Okina

Geological Institute of the RAS

Email: vic-kurnosov@rambler.ru
Russian Federation, Moscow

K. R. Galin

Geological Institute of the RAS

Email: vic-kurnosov@rambler.ru
Russian Federation, Moscow

References

  1. Блинова Е. В., Курносов В. Б. Гидротермальные изменения осадков в южном троге впадины Гуаймас Калифорнийского залива и трансформация состава растворов // Литология и полез. ископаемые. 2015. № 6. С. 491–509.
  2. Богданов Ю. А., Лисицын А. П., Сагалевич А. М., Гурвич Е. Г. Гидротермальный рудогенез океанского дна. М.: Научный мир, 2006. 527 с.
  3. Богданов Ю. А., Сагалевич А. М. Геологические исследования с глубоководных обитаемых аппаратов. М.: Научный мир, 2002. 304 с.
  4. Гурвич Е. Г. Металлоносные осадки Мирового океана. М.: Научный мир, 1998. 340 с.
  5. Курносов В. Б., Блинова Е. В. Гидротермальные изменения осадков и трансформация состава растворов во впадине Гуаймас Калифорнийского залива // ДАН. 2015. Т. 461. № 2. С. 197–200.
  6. Маракушев А. А. Термодинамика метаморфической гидратации минералов. М.: Наука, 1968. 200 с.
  7. Сахаров Б. А., Курносов В. Б. Особенности образования глинистых минералов в осадках из центра гидротермальной системы, скважина 858В, хребет Хуан де Фука // Литология и полез. ископаемые. 2022. № 2. С. 1–22.
  8. Buatier M. D., Karpoff A. M., Boni M. et al. Mineralogical and petrographic records of sediment–fluid interaction in the sedimentary sequence at Middle Valley, Juan de Fuca Ridge, Leg 139 / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 133–154.
  9. Butterfield D. A., McDuff R.A., Franrlin J., Wheat C. G. Geochemistry of hydrothermal vent fluids from Middle Valley, Juan de Fuca Ridge / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 395–410.
  10. Currey J. R., Moore D. G., Aguayo J. E. et al. Init. Repts. DSDP. V. 64. Pt. 1. Washington: U. S. Govt. Printing Office, 1982. 507 p.
  11. Davis E. E., Mottl M. J., Fisher A. T. et al. Init. Repts., 139: College Station, TX (Ocean Drilling Program). 1992. 1026 p.
  12. Davis E. E., Villinger H. Tectonic and thermal structure of the Middle Valley sedimented rift, northern Juan de Fuca Ridge / Eds M.J. Mottl, E.E. Davis, A.T. Fisher, J.F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 9–41.
  13. Frü-Green G.L., McKenzie J.A., Boni M. et al. Stable isotope and geochemical record of convective hydrothermal circulation in the sedimentary sequence of Middle Valley, Juan de Fuca Ridge, Leg 139 / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 291–306.
  14. Goodfellow W. D., Peter J. M. Geochemistry of hydrothermally altered sediment, Middle Valley, northern Juan De Fuca Ridge / Eds M.J. Mottl, E.E. Davis, A.T. Fisher, J.F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 207–289.
  15. Hajash A., Archer P. Experimental seawater/basalt interaction: effects of cooling // Contrib. Mineral. Petrol. 1980. V. 75. P. 1–13.
  16. Kelts K. Petrology of hydrothermally metamorphosed sediments at deep sea drilling Site 477, southern Guaymas Basin rift, Gulf of California / Init. Repts. DSDP. V. 64. Pt. 2. Washington: U. S. Govt. Printing Office, 1982. P. 1123–1136.
  17. Kristmanndottir H. Types of clay minerals in hydrothermally altered basaltic rocks, Reykjanes, Iceland // Jökull. 1976. V. 26. P. 30–39.
  18. Kurnosov V., Murdmaa I., Rosanova T. et al. Mineralogy of hydrothermally altered sediments and igneous rocks at Site 856–858, Middle Valley, Juan de Fuca Ridge, Leg 139 / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Dril-ling Program). 1994. P. 113–131.
  19. Leybourne M. I., Goodfellow W. D. Mineralogy and mine-ral chemistry of hydrothermally altered sediment, Middle Valley, Juan de Fuca Ridge / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 155–206.
  20. Peter J. M., Goodfellow W. D., Leybourne M. I. Fluid inclusion petrography and microthermometry of the Middle Valley hydrothermal system, northern Juan de Fuca Ridge / Eds M. J. Mottl, E. E. Davis, A. T. Fisher, J. F. Slack. Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 411–428.
  21. Rona P. A., Trivett D. A. Discrete and diffuse heat transfer at ASHES vent field, Axial Volcano, Juan de Fuca Ridge // Earth Planet. Sci. Lett. 1992. V. 109. № 1. P. 57–71.
  22. Seyfried W. E., Bischoff J. L. Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, se-condary mineral formation and implications for transport of heavy-metals // Geochim. Cosmochim. Acta. 1981. 45. P. 135–151.
  23. Von Damm K. L., Edmond J. M., Grant B. et al. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise // Geochim. Cosmochim. Acta. 1985. V. 49. № 11. P. 2197–2220.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural and tectonic scheme of the Middle Valley of the Juan de Fuca Ridge in the northeastern Pacific Ocean [Davis et al., 1992], arrows show the direction of plate motion (a) and the location of wells ODP 858A, B, C, D, F, G, hydrothermal vents and hydrothermal hills in the area of the Dead Dog hydrothermal field [Davis et al., 1992] (b). 1 - ODP wells, 2 - hydrothermal springs, 3 - acoustic edge of the hydrothermal field, 4 - boundaries of hydrothermal deposits

Download (300KB)
3. Fig. 2. Lithologic column of well 858B with sample location. 1 - metal-bearing sediments; 2 - sulfides; 3 - silty-clayey hemipelagic sediments

Download (244KB)
4. Fig. 3. Spidergrams. Average petrogenic element and trace element contents in hydrothermally altered sediments from well 858B normalized to the average composition of unaltered sediments from wells 855A, C, D, and the average composition of the hydrothermal source adjacent to well 858B normalized to the average composition of hydrothermal sources at 21°N. WTPS. 1-4 - sediments from well 858B: 1 - Formation I (upper part), 2 - Formation I (lower part), 3 - Formation IIB, 4 - Formation IID; 5 - hydrothermal source

Download (221KB)
5. Fig. 4. Spidergrams. Average rare earth element contents in hydrothermally altered sediments from well 858B normalized to the average composition of unaltered sediments from wells 855A, C, D, and the average composition of the hydrothermal source adjacent to well 858B normalized to the average composition of hydrothermal sources at 21°N. WTPS. 1-4 - sediments from well 858B: 1 - Formation I (upper part), 2 - Formation I (lower part), 3 - Formation IIB, 4 - Formation IID; 5 - hydrothermal source

Download (180KB)
6. Fig. 5. Spidergrams. Average contents of petrogenic elements and trace elements in hydrothermally altered sediments from well 858B, normalized by the average composition of unaltered sediments from wells 855A, C, D. 1-4 - sediments from well 858B: 1 - Formation I (upper part), 2 - Formation I (lower part), 3 - Formation IIB, 4 - Formation IID

Download (266KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».