Authigenic biotite from hydrothermally altered terrigenous sediments of the Central Hill (Escanaba Trough, Gorda Ridge, Pacific Ocean, hole ODP 1038B)
- Authors: Sakharov B.A.1, Kurnosov V.B.1, Zaitseva T.S.2, Savichev A.T.1, Morozov I.A.3, Korshunov D.M.1
-
Affiliations:
- Geological Institute RAS
- Institute of Precambrian Geology and Geochronology RAS
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS
- Issue: No 3 (2024)
- Pages: 301-316
- Section: Articles
- URL: https://journal-vniispk.ru/0024-497X/article/view/261737
- DOI: https://doi.org/10.31857/S0024497X24030023
- EDN: https://elibrary.ru/xwcmyu
- ID: 261737
Cite item
Abstract
For the first time, authigenic dispersed biotite was discovered in Pleistocene terrigenous sediments of the Central Hill, located in the Escanaba Trough in the southern part of the Gorda Ridge (northeastern sector of the Pacific Ocean), which accounts for almost the entire content of fine fractions <1 μm of some samples from ODP 1038B hole. The authigenic nature of biotite is associated with the metasomatic effect of hydrothermal solution on terrigenous clay minerals after intrusion of basaltic magma in the form of laccolith with a temperature of ~1200°C. The mineral composition of fine fractions of sediments was studied using complex analytical methods, including modeling of their diffraction patterns. It has been established that the dispersed micaceous mineral (biotite) is trioctahedral, high-iron, does not swell when saturated with glycol, but contracts after heating at 550°C. It is shown that in its structure there are no foreign layers, the height and composition of which differ from the micaceous layers. The decrease in the height of micaceous layers upon heating biotite to 550°C is mainly due to a decrease in the height of 2:1 octahedra due to the difference in the Fe2+–O and Fe3+–O bond lengths as a result of the oxidation of Fe2+ cations It has been established a limit value for the coefficient of variation CV, characterizing the absence of mixed-layering in a regular structure, which should not exceed a value of 0.10.
Full Text

About the authors
B. A. Sakharov
Geological Institute RAS
Author for correspondence.
Email: sakharovba@gmail.com
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
V. B. Kurnosov
Geological Institute RAS
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
T. S. Zaitseva
Institute of Precambrian Geology and Geochronology RAS
Email: z-t-s@mail.ru
Russian Federation, 199034, St. Petersburg, Makarova emb., 2
A. T. Savichev
Geological Institute RAS
Email: savichev.1947@mail.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
I. A. Morozov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS
Email: ivan.morozov@yandex.ru
Russian Federation, 119017, Moscow, Staromonetny lane, 35
D. M. Korshunov
Geological Institute RAS
Email: dmit0korsh@gmail.com
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
References
- Дьяконов Ю. С. Новые данные о разновидностях гидробиотитов // Кристаллохимия минералов. Л.: Наука, 1981. С. 39–46.
- Дриц В. А., Коссовская А. Г. Глинистые минералы: слюды, хлориты // Тр. ГИН АН СССР. Вып. 465. М.: Наука, 1991. 177 с.
- Дриц В. А., Сахаров Б. А. Рентгеноструктурный анализ смешанослойных минералов. М.: Наука, 1976. 256 с.
- Aldahan A. A., Morad S. Chemistry of detrital biotites and their phyllosilicate intergrowths in sandstones // Clays and Clay Minerals. 1986a. V. 34. P. 539–548.
- Aldahan A. A., Morad S. Mineralogy and chemistry of diagenetic clay minerals in proterosoic sandstones from Sweden // American Journal of Science. 1986b. V. 286. P. 29–80.
- Bailey S. W. Nomenclature for regular interstratifications // American Mineralogist. 1982. V. 67. P. 394–398.
- Banfield J. F., Eggleton R. A. Transmission electron microscopy study of biotite weathering // Clays and Clay Mine-rals. 1988. V. 36. P. 47–60.
- Brigatti M. F., Frigieri P., Ghezzo C., Poppi L. Crystal che-mistry of Al-rich biotites coexisting with muscovites in peraluminous granites // American Mineralogist. 2000. V. 85. P. 436–448.
- Dabat T., Hubert F., Paineau E., Launois P., Laforest C., Grégoire B., Dazas B., Tertre E., Delville A., Ferrage E. A general orientation distribution function for clay-rich media // Nature Communications. 2019. V. 10. № 5456.
- Developments in Clay Science. Chapter 5. Infrared and Raman Spectroscopies of Clay Minerals / Eds W. P. Gates, J. T. Kloprogge, J. Madejova, F. Bergaya. Amsterdam, Netherlands, Oxford, United Kingdom, Cambridge, Uni-ted States: Elsevier, 2017. V. 8. P. 107–149.
- Drits V. A., Tchoubar C. X-Ray diffraction by disordered lamellar structures. Heldenberg: Springer-Verlag, 1990. 371 p.
- Ericsson T., Wäppling R. Texture effects in 3/2–1/2 Mössbauer spectra // J. Phys. Colloq. 1976. V. 37. № C6. P. 719–723.
- Fouquet Y., Zierenberg R., Miller D. et al. Procideengs of the ODP, Initial Reports, 169 (Ocean Drilling Program). 1998. 592 p.
- Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Geol. Inst. of Hungary, 2011. 180 p. (Occasional Papers of Geological Institute of Hungary. V. 213). Ref.: P. 141–175. Ind.: P. 177–180.
- Lempart M., Derkowski A., Luberda-Durnaś1 K., Skiba S., Błachowski A. Dehydrogenation and dehydro-xylation as drivers of the thermal decomposition of Fe-chlorites // American Mineralogist. 2018. V. 103. P. 1837–1850.
- Lempart M., Derkowski A., Strączek T., Kapusta C. Syste-matics of H2 and H2O evolved from chlorites during oxidative dehydrogenation // American Mineralogist. 2020. V. 105. P. 932–944.
- Sakharov B. A., Lindgreen H., Salyn A. L., Drits V. A. Determination of illite-smectite structures using multispecimen X-ray diffraction profile filling // Clay Miner. 1999. V. 47. P. 555–566.
- Sakharov B. A., Lanson B. X-ray identification of mixed-layer structures. Modeling of diffraction effects. Chapter 2.3. Handbook of Clay Science. Part B. Techniques and Applications / Eds F. Bergaya, G. Lagaly. Amsterdam, Boston, Heidelberg, London, N.Y., Oxford: Elsevier, 2013. P. 51–135.
- Smoliar-Zviagina B. B. Relationships between structural parameters and chemical composition of micas // Clay Minerals. 1993. V. 28. P. 603–624.
- Vedder W., Wilkins W. T. Dehydroxylation and rehydroxy-lation, oxidation and reduction of mica // American Mi-neralogist. 1969. V. 54. P. 482–509.
- Wojdyr M. Fityk: a general-purpose peak fitting program // J. Appl. Cryst. 2010. V. 43. P. 1126–1128.
- Zierenberg R. A., Shanks W. C., Koski R. A., Morton J. L., III. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba trough, 41N, Gorda Ridge // Economic Geology. 1993. V. 88. P. 2069–2098.
- Veblen D. R., Ferry J. M. А ТЕМ study of the biotite-chloritc reaction and comparison with petrologic observations // Amer. Miner. 1983. V. 68. P. 1160–1168.
Supplementary files
