Peculiarities of clay minerals formation in the Pleistocene sediments under specific tectonomagmatic and hydrothermal conditions of the Central Hill (Escanaba Trough, Gorda Ridge, Pacific Ocean). Communication 1. Hole ODP 1038B
- Authors: Kurnosov V.B.1, Sakharov B.A.1, Konovalov Y.I.1, Savichev A.T.1, Morozov I.A.2, Korshunov D.M.1
-
Affiliations:
- Geological Institute, Russian Academy of Sciences
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Issue: No 5 (2024)
- Pages: 587-602
- Section: Articles
- URL: https://journal-vniispk.ru/0024-497X/article/view/268787
- DOI: https://doi.org/10.31857/S0024497X24050057
- EDN: https://elibrary.ru/YPKDOE
- ID: 268787
Cite item
Abstract
Using a complex of analytical methods, clay minerals were studied in Pleistocene sediments from Hole ODP 1038B, 120.50 m deep, drilled on the northwestern edge of the Central Hill, located in the Escanaba Trough (Gorda Ridge) near a hydrothermal source with a temperature of 108°C, as well as in Pleistocene background terrigenous sediments from reference Hole ODP 1037B, drilled in the Escanaba Trough, 5 km south of Central Hill. The association of terrigenous clay minerals in sediments from Hole 1037B consists of mixed-layer smectite-illites, smectite, chlorite, illite, and kaolinite. In sediments from Hole 1038B in the interval from the bottom surface to a depth of 5–7 m, clay minerals are terrigenous. In the rest of the sedimentary section, clay minerals are represented by newly formed biotite, chlorite, and dioctahedral smectite. Their formation occurred under the conditions that arose during the intrusion of basaltic melt into the Escanaba trough with the formation of a laccolith and the subsequent rapid cooling of its flank; the intrusion was accompanied by the ascent of high-temperature hydrothermal fluid in the central discharge channel, interacting with the adjacent sediments. As a result, at the high-temperature stage of this interaction, finely dispersed biotite was formed in the sediments due to the original terrigenous clay minerals, K-feldspar and amphiboles. Then, at the rapid cooling of the hydrothermal fluid to a temperature presumably 270–330°C, partial replacement of biotite by chlorite. With further rapid cooling of the hydrothermal fluid to a temperature of 200°C and below and its mixing with sea water seeping into the sediments of the Central Hill, smectite was formed.
Keywords
Full Text

About the authors
V. B. Kurnosov
Geological Institute, Russian Academy of Sciences
Author for correspondence.
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
B. A. Sakharov
Geological Institute, Russian Academy of Sciences
Email: sakharovba@gmail.com
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
Yu. I. Konovalov
Geological Institute, Russian Academy of Sciences
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
A. T. Savichev
Geological Institute, Russian Academy of Sciences
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
I. A. Morozov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Staromonetny lane, 35
D. M. Korshunov
Geological Institute, Russian Academy of Sciences
Email: vic-kurnosov@rambler.ru
Russian Federation, 119017, Moscow, Pyzhevsky lane, 7, bld. 1
References
- Богданов Ю.А., Лисицын А.П., Сагалевич А.М., Гурвич Е.Г. Гидротермальный рудогенез океанского дна. М.: Научный мир, 2006. 527 с.
- Дриц В.А., Сахаров Б.А. Рентгеноструктурный анализ смешанослойных минералов. М.: Наука, 1976. 256 с.
- Дриц В.А., Коссовская А.Г. Глинистые минералы: слюлы, хлориты. М.: Наука, 1991. 176 с.
- Сахаров Б.А., Курносов В.Б. Особенности образования глинистых минералов в осадках из центра гидротермальной системы, скважина 858В, хребет Хуан де Фука // Литология и полез. ископаемые. 2022. № 2. С. 181–204.
- Сахаров Б.А., Курносов В.Б., Зайцева Т.С., Савичев А.Т., Морозов И.А., Коршунов Д.М. Аутигенный биотит из гидротермально измененных терригенных осадков Центрального Холма (трог Эсканаба, хребет Горда, Тихий океан, скважина ODP 1038В) // Литология и полез. ископаемые. 2024. № 3. С. 301‒316.
- Buatier M.D., Karpoff A.M., Boni M. et al. Mineralogical and petrographic records of sediment–fluid interaction in the sedimentary sequence at Middle Valley, Juan de Fuca Ridge, Leg 139 / Eds M.J. Mottl, E.E. Davis, A.T. Fisher, J.F. Slack // Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 133‒154.
- Campbell A.C., German Ch.R., Palmer M.R. et al. Chemistry of hydrothermal fluids from Escanaba Trough, Gorda Ridge / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 201–222.
- Curray J.R., Moore D.G., Aguayo J.E. et al. Init. Repts. DSDP. 64. Pt. 1. Washington: U.S. Govt. Printing Office, 1982. 507 p.
- Davis E.E., Mottl M.J., Fisher A.T. et al. Proc. ODP. Init. Repts., 139: College Station, TX (Ocean Drilling Program). 1992. 1026 p.
- Davis E.E., Becker K. Thermal and tectonic structure of Escanaba Trough: New heat flow measurements and seismic-reflection profiles / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 45–64.
- Doebelin N., Kleeberg R. Profex. A graphical user interface for the Rietveld refinement program BGMN // J. Appl. Crystallogr. 2015. V. 48. P. 1573–1580.
- Drits V.A., Tchoubar C. X-Ray diffraction by disordered lamellar structures. Heldenberg: Springer-Verlag, 1990. 371 p.
- Fouquet Y., Zierenberg R.A., Miller D.J. et al. Proc. ODP, Init. Repts., 169: College Station. TX (Ocean Drilling Program). 1998. 592 p.
- Goodfellow W.D., Peter J.M. Geochemistry of hydrothermally altered sediment, Middle Valley, northern Juan De Fuca Ridge / Eds M.J. Mottl, E.E. Davis, A.T. Fisher, J.F. Slack // Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 207–289.
- Kurnosov V., Murdmaa I., Rosanova T. et al. Mineralogy of hydrothermally altered sediments and igneous rocks at Site 856–858, Middle Valley, Juan de Fuca Ridge, Leg 139 / Eds M.J. Mottl, E.E. Davis, A.T. Fisher, J.F. Slack // Proc. ODP, Sci. Results, 139: College Station, TX (Ocean Drilling Program). 1994. P. 113–131.
- Kurnosov V., Zolotarev B.P., Artamonov A.V. et al. Alteration effects in the upper oceanic crust – data and comments. Moscow: GEOS, 2008. 1054 p. http://www.ginras.ru/files/docs/publications/TechNote_AlterationEffects.pdf
- Lackschewitz K.S., Singer A., Botz R. et al. Mineralogy and geochemistry of clay minerals near a hydrothermal site in the Escanaba Trough, Gorda Ridge, Northeast Pacific Ocean / Eds R.A. Zierenberg, Y. Fouquet, D.J. Miller, W.R. Normark // Proc. ODP, Sci. Results, 169: College Station. TX (Ocean Drilling Program). 2000. P. 1–24.
- Moore D.M., Reynolds R.C.J. X-ray Diffraction and the Identification and Analysis of Clay Minerals / 2nd ed. Oxford, UK: Oxford University Press, 1999.
- Morton J.L., Fox Ch.G. Structural setting and interaction of volcanism and sedimentation at Escanaba Trough: Geophysical Results / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 21–43.
- Normark W.R., Gutmacher Ch.E., Zierenberg R.A., Wong F.L., Rosenbauer R.J. Sediment fill of Escanaba Trough / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 91– 129.
- Post J.E., Bish D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data // Rev. Mineral. 1989. V. 20. P. 277–308. [CrossRef]
- Ross S.L., Zierenberg R.A. Volcanic geomorphology of SESCA and NESCA sites, Escanaba Trough / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 143–152.
- Sakharov B.A., Lanson B. X-ray identification of mixed-layer structures. Modeling of diffraction effects. Chapter 2.3. Handbook of Clay Science. Part B. Techniques and Applications / Eds F. Bergaya, G. Lagaly. Amsterdam, Boston, Heidelberg, London N.Y., Oxford: Elsevier, 2013. P. 51–135.
- Wojdyr M. Fityk: a general-purpose peak fitting program // J. Appl. Cryst. 2010. V. 43. P. 1126–1128.
- Zierenberg R.A., Shanks W.C. III, Koski R.A., Morton J.L. III. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba trough, 41N, Gorda Ridge // Econ. Geol. 1993. V. 88. P. 2069–2098.
- Zierenberg R.A., Shanks W.C. III. Sediment alteration associated with massive sulfide formation in Escanaba Trough, Gorda Ridge; the importance of sea-water mixing and magnesium metasomatism / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 250–278.
- Zierenberg R.A., Morton J.L., Koski R.A., Ross S.L. Geologic Setting of Massive Sulfide Mineralization in Escanaba Trough / Eds J.L. Morton, R.A. Zierenberg, C.A. Reiss // Geologic, Hydrothermal, and Biologic Studies at Escanaba Trough, Offshore Northern California. U.S. Geol. Surv. Bull. 2022. P. 171–197.
Supplementary files
