LATE PLIOCENE–QUATERNARY (<2.7 MA) SEDIMENTATION IN THE EURASIAN BASIN (ARCTIC OCEAN)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Geomorphological analysis and age reference of the late Pliocene-Quaternary horizons identified in the ARC1407A seismic section in the Nansen Basin by onlapping the oceanic basement, the age of which was specified based on the results of calculating the position of theoretical linear magnetic anomalies, were carried out. Interpretation of the ARC1407A seismic time section allows the possibility of using the seismostratigraphic reference scheme of glaciomarine deposits previously developed for the western Barents Sea and the northeastern part of the adjacent deep-water basin. As a result of the geomorphological analysis, systems of extended canyons were identified in the Nansen Basin and in the eastern part of the Amundsen Basin. Significant amounts of sedimentary cover in the Nansen basin are glacio-marine deposits formed since the end of the Late Pliocene. In the central part of the Nansen basin, glacio-marine sediments were deposited simultaneously from two closely located troughs – St. Anna and Voronin. Glacio-marine sediments were transported to the central part of the Nansen basin cyclically, and have a mixed character – underwater landslides and turbidite flows. In the Amundsen and Podvodnikov basins, the accumaulation of glacio-marine deposits could begin in the second half of the Middle Pleistocene.

Авторлар туралы

A. Zayonchek

Geological Institute of Russian Academy of Sciences (GIN RAS); All-Russian Research Geological Oil Institute

Хат алмасуға жауапты Автор.
Email: a_zayonchek@mail.ru
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia; Shosse Entuziastov, 36, Moscow, 105118 Russia

S. Sokolov

Geological Institute of Russian Academy of Sciences (GIN RAS)

Email: sysokolov@yandex.ru
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia

A. Soloviev

Geological Institute of Russian Academy of Sciences (GIN RAS); All-Russian Research Geological Oil Institute

Email: sysokolov@yandex.ru
Pyzhevsky lane, 7, bld. 1, Moscow, 119017 Russia; Shosse Entuziastov, 36, Moscow, 105118 Russia

Әдебиет тізімі

  1. Басилян А.Э., Никольский П.А., Максимов Ф.Е., Кузнецов В.Ю. Возраст следов покровного оледенения Новосибирских островов по данным 230Th/U – датирования раковин моллюсков // Строение и история развития литосферы. Вклад России в Международный Полярный Год. Т. 4 / Гл. ред. Ю.Г. Леонов. М.: Paulsen, 2010. С. 506–514.
  2. Величко А.А. Проблемы реконструкций позднеплейстоценовых ледниковых покровов на территории СССР // Изв. АН СССР. Cер. географ. 1979. № 6. C. 12–26.
  3. Вержбицкий В.Е., Малышев Н.А., Колюбакин А.А. и др. Новые данные о тектонике северо-востока моря Лаптевых (по результатам экспедиционных исследований и стратиграфического бурения) // Тектоника и геодинамика Земной коры и мантии: фундаментальные проблемы-2024. Материалы LV Тектонического совещания / Отв. ред. К.Е. Дегтярев. М.: ГЕОС, 2024. Т. 1. С. 80–86.
  4. Глебовский В.Ю., Каминский В.Д., Минаков А.Н. и др. История формирования Евразийского бассейна Северного Ледовитого океана по результатам геоисторического анализа аномального магнитного поля // Геотектоника. 2006. № 4. С. 21–42.
  5. Голионко Б.Г., Басилян А.Э., Никольский П.А. и др. Складчато-надвиговые деформации о. Новая Сибирь (Новосибирские острова, Россия): возраст, морфология и генезис структур // Геотектоника. 2019. № 6. С. 46–64.
  6. Гросвальд М.Г. Оледенение Русского Севера и Северо-Востока в эпоху последнего великого похолодания // Материалы гляциологических исследований. Вып. 106 / Под. ред. В.М. Котлякова. М.: Наука, 2009. 153 с.
  7. Гусев Е.А., Шкарубо С.И. Аномальное строение хребта Книповича // Российский журнал Наук о Земле. 2001. Т. 3. № 2. С. 165–181.
  8. Зайончек А.В., Меркурьев С.А. Новые результаты идентификации линейных магнитных аномалий западной части котловины Нансена и их применение при сейсмостратиграфическом анализе // Геология морей и океанов. Материалы XXIV Международной научной конференции школы по морской геологии. М.: ИО РАН, 2021. Т. IV. С. 70–74.
  9. Зайончек А.В., Соколов С.Ю., Соловьев А.В. Эволюция Евразийского бассейна в дочетвертичное время: результаты интерпретации сейсмического профиля ARC1407a // Геотектоника. 2023. № 6. С. 3–42.
  10. Карасик А.М. Евразийский бассейн Северного Ледовитого океана с позиции тектоники плит // Проблемы геологии полярных областей Земли / Под ред. И.С. Грамберга, В.М. Лазуркина, М.Г. Равича, Б.В. Ткаченко. Л.: НИИГА, 1974. С. 23–31.
  11. Мазарович А.О., Абрамова А.С., Добролюбова К.О. и др. Вероятность формирования оползней на норвежской континентальной окраине // Вестник КРАУНЦ. Науки о Земле. 2024. Вып. 61. № 1. С. 42–56.
  12. Малышев Н.А., Вержбицкий В.Е., Данилкин С.М. и др. Первые результаты стратиграфического бурения на северо-востоке моря Лаптевых // ДАН. 2024. Т. 515. № 1. С. 26–35. https://doi.org/10.31857/S2686739724030048
  13. Рекант П.В., Гусев Е.А. Структура и история формирования осадочного чехла рифтовой зоны хребта Гаккеля (Северный Ледовитый океан) // Геология и геофизика. 2016. Т. 57. № 9. С. 1634–1640.
  14. Рекант П.В., Петров О.В., Гусев Е.А. Модель формирования седиментационной системы Евразийского бассейна Северного Ледовитого океана как основа для реконструкции его тектонической истории // Геотектоника. 2021. № 5. С. 27–50.
  15. Соколов С.Ю., Мороз Е.А., Чамов Н.П., Патина И.С. Палеоген–четвертичная полифациальная осадочная система южного обрамления котловины Нансена // Литология и полез. ископаемые. 2021. № 5. C. 389–405.
  16. Alexandropoulou N., Winsborrow M., Andreassen K. et al. Continuous seismostratigraphic framework for the Western Svalbard–Barents Sea margin over the last 2.7 Ma: Implications for the Late Cenozoic glacial history of the Svalbard–Barents Sea ice sheet // Front. Earth Sci. 2021. V. 9. 656732.https://doi.org/10.3389/feart.2021.656732
  17. Amundsen I.M.H., Blinova M., Hjelstuen B.O. et al. The Cenozoic western Svalbard margin: Sediment geometry and sedimentary processes in an area of ultraslow oceanic spreading // Marin. Geophys. Res. 2011. V. 32. P. 441–453.
  18. Andreassen K., Nilssen L.C., Rafaelsen B., Kuilman L. Three-dimensional seismic data from the Barents Sea margin reveal evidence of past ice streams and their dynamics // Geology. 2004. V. 32. P. 729–732.
  19. Andreassen K., Odegaard C. M., Rafaelsen B. Imprints of former icem streams, imaged and interpreted using industry three-dimensional seismic data from the south-western Barents Sea // Seismic Geomorphology: Applications to Hydrocarbon Exploration and Production / Eds R.J. Davies, H.W. Posamentier, L.J. Wood, J.A. Cartwright. London: Geological Society, 2007. P. 151–169.
  20. Backman J., Moran K., McInroy D.B., Mayer L.A. et al. Artic Coring Expedition (ACEX) // Proc. Integr. Ocean Drill. Program Leg. 302. 2006. https://doi.org/10.2204/iodp.roc.302.2006
  21. Batchelor C.L., Dowdeswell J.A. The physiography of High Arctic cross-shelf Troughs // Quat. Sci. Rev. 2014. V. 92. P. 68–96.
  22. Bonvalot S., Balmino G., Briais A. et al. World Gravity Map. Ed. by BGI-CGMW-CNES-IRD, (Commission for the Geological Map of the World. Paris. 2012). https://bgi.obs-mip.fr/activities/projects/world-gravity-map-wgm
  23. Bruvoll V., Breivik A.J., Mjelde R., Pedersen R.B. Burial of the Mohn-Knipovich seafloor spreading ridge by the Bear Island Fan: Time constraints on tectonic evolution from seismic stratigraphy // Tectonics. 2009. V. 28(4). P. 1–14.
  24. Butt F.A., Elverhoi A., Solheim A., Forsberg C.F. Deciphering late Cenozoic development of the western Svalbard margin from ODP site 986 results // Mar. Geol. 2000. V. 169. P. 373–390.
  25. Castro C.F., Knutz P.C., Hopper J.R., Funck T. Depositional evolution of the western Amundsen Basin, Arctic Ocean: Paleoceanographic and tectonic implications // Paleoceanograph. Paleoclimatol. 2018. V. 33. https://doi.org/10.1029/2018PA003414
  26. Channell J.E.T., Smelror M., Jansen E. et al. Age models for glacial fan deposits off East Greenland and Svalbard (ODP Site 986 and Site 987) // Proc. ODP Sci. Results. 1999. V. 162. P. 149–166.
  27. Dessandier P.-A., Knies J., Plaza-Faverola A., Labrousse C., Renoult M., Panieri G. et al. Ice-sheet melt drove methane emissions in the Arctic during the last two interglacials // Geology. 2021. V. 49(7). P. 799–803.
  28. Eidvin E., Nagy J. Foraminiferal biostratigraphy of Pliocene deposits at Site 986, Svalbard margin // Proc. ODP Sci. Results. 1999. V. 162. P. 3–17.
  29. Engen Ø., Faleide J.I., Dyreng T.K. Opening of the Fram Strait gateway: A review of plate tectonic constraints // Tectonophysics. 2008. V. 450. P. 51–69.
  30. Engen Ø., Gjengedal J.A., Faleide J.I. et al. Seismic stratigraphy and sediment thickness of the Nansen Basin, Arctic Ocean // Geophys. J. Int. 2009. V. 176. P. 805–821.
  31. Faleide J.I., Solheim A., Fiedler A., Vanneste K. Late Cenozoic evolution of the Western Barents Sea–Svalbard continental margin // Global Planet. Change. 1996. V. 12(1–4). P. 53–74.
  32. Fiedler A., Faleide J.I. Cenozoic sedimentation along the southwestern Barents Sea margin in relation to uplift and erosion of the shelf // Global Planet. Change. 1996. V. 12. P. 75–93.
  33. Forsberg C.F., Solheim A., Elverhoi A. et al. The depositional environment of the western Svalbard margin during the late Pliocene and the Pleistocene: Sedimentary facies changes at Site 986 // Proc. ODP Sci. Results. 1999. V. 162. P. 233–246.
  34. Gaina C., Roest W.R., Muller R.D. Late Cretaceous–Cenozoic deformation of northeast Asia // Earth Planet. Sci. Lett. 2002. V. 197. P. 273–286.
  35. Geissler W.H., Jokat W. A geophysical study of the northern Svalbard continental margin // Geophys. J. Int. 2004. V. 158. P. 50–66.
  36. The Geologic Time Scale / Eds F.M. Gradstein, J.C. Ogg, M.D. Smith, G.M. Ogg, Oxford, UK: Elsevier Sci., 2020. 1357.
  37. Harishidayat D., Johansen S. E., Batchelor C. et al. Pliocene–Pleistocene glacimarine shelf to slope processes in the south-western Barents Sea // Basin Res. V. 22(2). P. 1315–1336.
  38. Hjelstuen B.O., Eldholm O., Faleide, J.I. Recurrent Pleistocene megafailures on the SW Barents Sea margin // Earth and Planet. Sci. Lett. 2007. V. 258. P. 605–618.
  39. Jakobsson M., Mayer L.A., Bringensparr C. et al. The International Bathymetric Chart of the Arctic Ocean. Version 4.0 // Scientific Data. 2020. V. 176(7). https://doi.org/10.1038/s41597-020-0520-9
  40. Jokat W., Micksch U. Sedimentary structure of the Nansen and Amundsen basins, Arctic Ocean // Geophys. Res. Lett. 2004. V. 31(2). P. 1–4.
  41. Jansen E., Raymo M. E., Blum P. The leg 162 Shipboard Scientific Party. 1996. in Proceedings of the Ocean Drilling Program. V. 162. College Station. TX. 1182.
  42. Kaminsky D.V., Chamov N.P., Zhilin D.M. et al. New Data on the Structure of the Laptev Sea Flank of the Gakkel Ridge (Arctic Ocean) // Lithology and Mineral Resources. 2024. V. 59. № 6. P. 598–610.
  43. Kitamura A., Kawagoe T. Eustatic sea-level change at the Mid-Pleistocene climate transition: new evidence from the shallow-marine sediment record of Japan // Quat. Sci. Rev. 2006. V. 25. P. 323–335.
  44. Knies J., Matthiessen J., Vogt C., Laberg J.S. et al. The Plio-Pleistocene glaciation of the Barents Sea–Svalbard region: a new model based on revised chronostratigraphy // Quat. Sci. Rev. 2009. V. 28(9). P. 812–829.
  45. Mattingsdal R., Knies J., Andreassen K., Fabian K., Husum K., Grosfjeld K. et al. A new 6 Myr stratigraphic framework for the Atlantic-Arctic Gateway // Quat. Sci. Rev. 2014. V. 92. P. 170–178.
  46. Medvedev S., Faleide J.I., Hartz E.H. Cenozoic reshaping of the Barents-Kara Shelf: Influence of erosion, sedimentation, and glaciation // Geomorphology. 2023. V. 420. https://doi.org/10.1016/j.geomorph.2022.108500
  47. Merkouriev S., DeMets C. High-resolution Quaternary and Neogene reconstructions of Eurasia–North America plate motion // Geophys. J. Int. 2014. V. 198. P. 366–384.
  48. Michael P.J., Langmuir C.H., Dick H.J.B. et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean // Nature. 2003. V. 423(6943). P. 956–961.
  49. Moore I.D., Neiber J.L. Landscape assessment of soil erosion and non-point source pollution // J. Minn. Acad. Sci. 1989. V. 55. P. 18–24.
  50. Myhre A., Thiede J., Firth J.A. North Atlantic Arctic Gateways // Proc. ODP Ini. Reprorts. 1995. V. 151. P. 1–81.
  51. Mudelsee M., Stattegger K. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis // Geologische Rundschau. 1997. V. 86. P. 499–511.
  52. Nikishin A.M., Gaina C., Petrov E.I. et al. Eurasia Basin and Gakkel Ridge, Arctic Ocean: Crustal asymmetry, ultra-slow spreading and continental rifting revealed by new seismic data // Tectonophysics. 2018. V. 746. P. 64–82.
  53. Laberg J.S., Andreassen K., Knies J., Vorren T.O., Winsborrow M. Late Pliocene–Pleistocene development of the Barents Sea Ice Sheet. // Geology. 2010. V. 38. P. 107–110.
  54. Lasabuda A.P.E., Johansen N.S., Laberg J.S. Cenozoic uplift and erosion of the Norwegian Barents Shelf – A review // Earth-Sci. Rev. 2021. V. 217. 103609. https://doi.org/10.1016/j.earscirev.2021.103609
  55. Pontbriand C.W., Soule S.A., Sohn R.A., Humphris S.E., Kunz C., Singh H., Nakamura K., Jakobsson M., Shank T. Effusive and explosive volcanism on the ultraslow-spreading Gakkel Ridge, 85°E // Geochem. Geophys. Geosyst. 2012. V. 13(10). P. 1–22. https://doi.org/10.1029/2012GC004187
  56. Rebesco M., Laberg J. S., Pedrosa M. T. et al. Onset and growth of Trough-Mouth Fans on the North-Western Barents Sea margin – implications for the evolution of the Barents Sea/Svalbard Ice Sheet // Quat. Sci. Rev. 2014. V. 92. P. 227–234.
  57. Safronova P.A., Laberg J.S., Andreassen K. et al. Late Pliocene-early Pleistocene deep-sea basin sedimentation at high-latitudes: mega-scale submarine slides of the northwestern Barents Sea margin prior to the shelf-edge glaciations // Basin Res. 2017. V. 29. P. 537–555.
  58. Smith D.E., Shi S., Cullingford R.A. et al. The Holocene Storegga Slide tsunami in the United Kingdom // Quat. Sci. Rev. 2004. V. 23(23–24). P. 2291–2321. https://doi.org/10.1016/j.quascirev.2004.04.001
  59. Vorren T.O., Laberg J.S. Trough mouth fans – palaeoclimate and ice-sheet monitors // Quat. Sci. Rev. 1997. V. 16. P. 865–881.
  60. Waage M., Bünz S., Bøe R., Mienert J. High-resolution 3D seismic exhibits new insights into the middle-late Pleistocene stratigraphic evolution and sedimentary processes of the Bear Island trough mouth fan // Mar. Geol. 2018. V. 403. P. 139–149.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».