Evolutionary Stability of Gene Regulatory Networks That Define the Temporal Identity of Neuroblasts


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The ensemble of gap genes is one of the best studied and most conserved gene regulatory networks (GRNs). Gap genes, such as hunchback (hb), Krüppel (Kr), pou-domain (pdm; pdm1 and pdm2), and castor (cas) genes belong to the well-known families Ikaros (IKZF1/hb), Krüppel-like factor (KLF/Kr), POU domain (BRN1/pdm-1, BRN2/pdm-2), and Castor homologs (CASZ1/cas), which are present in all vertebrate genomes and code for site-specific transcription factors. Gap genes form a core of an embryonic segmentation control subnetwork and define the temporal identity of neuroblasts in Drosophila embryos. The key gene regulatory mechanisms whereby the gap genes govern segmentation and neurogenesis are similar. Moreover, the gap genes are evolutionarily conserved in terms of their function as a core of the temporal specification GRN during neurogenesis in vertebrates, including humans. A problem of special interest is to understand the extent of conservation for the molecular mechanisms involved in the regulatory functions of the gap genes. The problem is especially important because human orthologs of the gap gens are crucial for many pathophysiological processes, including tumor growth suppression.

作者简介

A. Spirov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: ekmyasnikova@yandex.ru
俄罗斯联邦, St. Petersburg, 194223

E. Myasnikova

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: ekmyasnikova@yandex.ru
俄罗斯联邦, St. Petersburg, 195251

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2019