COMPARATIVE CHARACTERISTICS OF AN IN SITU-FORMED DISPERSED Cu–ZnO CATALYST WITH INDUSTRIAL ANALOGUES IN THE PROCESS OF GLYCEROL HYDROGENATION
- Authors: Porukova I.1, Samoilov V.O.1, Shamanaev I.V.2, Dmitriev G.1, Maximov A.1
-
Affiliations:
- A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
- Boreskov Institute of Catalysis, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 65, No 3 (2025)
- Pages: 226-237
- Section: Articles
- URL: https://journal-vniispk.ru/0028-2421/article/view/285232
- DOI: https://doi.org/10.31857/S0028242125030062
- EDN: https://elibrary.ru/LDIGFY
- ID: 285232
Cite item
Abstract
Исследованы шесть медьсодержащих промышленных катализаторов гидрогенолиза глицерина (ГЛ) с получением пропиленгликоля (ПГ) зарубежного и отечественного производства (К1–К6), а также in situ Cu–ZnO-катализатор в следующих условиях: T – 200, 220 и 240°С с добавкой и без добавки KOH. Основной продукт реакции – ПГ, побочные – этиленгликоль ЭГ и молочная кислота/лактат калия (МК). Наибольшей активностью среди всех исследованных катализаторов в интервале температур 200, 220 и 240°С обладает катализатор, полученный in situ. При повышении температуры c 200 до 240°С конверсия глицерина (XГЛ) для in situ катализатора Cu–ZnO выросла в 3 раза (с 11,2 до 30,2%). Продемонстрировано, что введение 5,3 мас.% Mn в состав катализатора Сu–Al2O3 повышает XГЛ почти в 2 раза в интервале T = 200–240°С. Определена связь активности изученных катализаторов с предполагаемым составом: XГЛ увеличивалась в ряду Cu–Cr2O3 < Cu–Al2O3 < Cu–ZnO. Установлено, что наличие в фазовом составе Cu(0) необходимо для успешного протекания гидрогенолиза ГЛ1.
Full Text

About the authors
Iuliana Porukova
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: porukova@ips.ac.ru
ORCID iD: 0000-0003-3452-8009
Russian Federation, Moscow, 119991
Vadim O. Samoilov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: samoilov@ips.ac.ru
ORCID iD: 0000-0003-2455-8765
Russian Federation, Moscow, 119991
Ivan V. Shamanaev
Boreskov Institute of Catalysis, Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
Email: i.v.shamanaev@catalysis.ru
ORCID iD: 0000-0003-2583-3183
Russian Federation, Novosibirsk, 630090
Georgy Dmitriev
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: dmitriev.gs@ips.ac.ru
ORCID iD: 0000-0001-6529-2655
Russian Federation, Moscow, 119991
Anton Maximov
A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Author for correspondence.
Email: max@ips.ac.ru
ORCID iD: 0000-0001-9297-4950
Russian Federation, Moscow, 119991
References
- Nakagawa Y., Tomishige K. Heterogeneous catalysis of the glycerol hydrogenolysis // Catal. Sci. Technol. 2011. V. 1. P. 179–190.https://doi.org/10.1039/c0cy00054j
- Zhao H., Zheng L., Li X., Chen P., Hou Z. Hydrogenolysis of glycerol to 1,2-propanediol over Cu-based catalysts: A short review // Catal. Today. 2020. V. 355. P. 84–95. https://doi.org/10.1016/j.cattod.2019.03.011
- Maris E.P., Davis R.J. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts // J. Catal. 2007. V. 249, № 2. P. 328–337.https://doi.org/10.1016/j.jcat.2007.05.008
- Guo L., Zhou J., Mao J., Guo X., Zhang S. Supported Cu catalysts for the selective hydrogenolysis of glycerol to pro-panediols // Appl. Catal. A: Gen. 2009. V. 367, № 1–2. P. 93–98. https://doi.org/10.1016/j.apcata.2009.07.040
- Kumar P., Shah A.K., Lee J.H., Park Y.H., Štangar U.L. Selective hydrogenolysis of glycerol over bifunctional cop-per-magnesium-supported catalysts for propanediol synthesis // Ind. Eng. Chem. Res. 2020. V. 59, № 14. P. 6506–6516. https://doi.org/10.1021/acs.iecr.9b06978
- Wang S., Liu H. Selective hydrogenolysis of glycerol to propylene glycol on Cu–ZnO catalysts // Catal. Lett. 2007. V. 117. P. 62–67. https://doi.org/10.1007/s10562-007-9106-9
- Balaraju M., Rekha V., Sai Prasad P.S., Prasad R.B.N., Lingaiah N. Selective hydrogenolysis of glycerol to 1,2 propane-diol over Cu–ZnO catalysts // Catal. Lett. 2008. V. 126. P. 119‒124. https://doi.org/10.1007/s10562-008-9590-6
- Gao Q., Xu B., Tong Q., Fan Y. Selective hydrogenolysis of raw glycerol to 1,2-propanediol over Cu–ZnO catalysts in fixed-bed reactor // Biosci. Biotechnol. Biochem. 2016. V. 80, № 2. P. 215–220. https://doi.org/10.1080/09168451.2015.1088372
- Bienholz A., Hofmann H., Claus P. Selective hydrogenolysis of glycerol over copper catalysts both in liquid and vapour phase: correlation between the copper surface area and the catalyst’s activity // Appl. Catal. A: Gen. 2011. V. 391, № 1–2. P. 153–157. https://doi.org/10.1016/j.apcata.2010.08.047
- Bienholz A., Schwab F., Claus P. Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxa-late gel method: Influence of solvent and reaction temperature on catalyst deactivation // Green Chem. 2010. V. 12. P. 290–29. https://doi.org/10.1039/b914523k
- Kim N.D., Oh S., Joo J.B., Jung K.S., Yi J. The promotion effect of Cr on copper catalyst in hydrogenolysis of glycerol to propylene glycol // Top. Catal. 2010. V. 53. P. 517–522. https://doi.org/10.1007/s11244-010-9480-1
- Dmitriev G.S., Melchakov I.S., Samoilov V.O., Ramazanov D.N., Zanaveskin L.N. Synthesis of 1,2‐propylene glycol in a continuous down‐flow fixed‐bed reactor with Cu/Al2O3 catalyst // ChemistrySelect. 2022. V. 7, № 10. ID e202104257. https://doi.org/10.1002/slct.202104257
- Дмитриев Г.С., Хаджиев В.И., Николаев С.А., Эзжеленко Д.И., Мельчаков И.С., Занавескин Л.Н. Медьсодержащие катализаторы в жидкофазном гидрогенолизе глицерина // Нефтехимия. 2020. T. 60, № 5. С. 679–685. https://doi.org/10.31857/S0028242120050081 [Dmitriev G.S., Khadzhiev V.I., Nikolaev S.A., Ezzhelenko D.I., Mel’chakov I.S., Zanaveskin L.N. Copper-containing catalysts in the liquid-phase hydrogenolysis of glycerol // Petrol. Chemistry. 2022. V. 60. P. 1066–1072. https://doi.org/10.1134/S096554412009008X]
- Nanda M.R., Yuan Z., Shui H., Xu C. Selective hydrogenolysis of glycerol and crude glycerol (а by-product or waste stream from the biodiesel industry) to 1,2-propanediol over B2O3 promoted Cu/Al2O3 catalysts // Catalysts. 2017 V. 7, № 7. ID 16. https://doi.org/10.3390/catal7070196
- Dasari M.A., Kiatsimkul P.P., Sutterlin W.R., Suppes G.J. Low-pressure hydrogenolysis of glycerol to propylene glycol // Appl. Catal. A: Gen. 2005. V. 281, № 1‒2. P. 225–231. https://doi.org/10.1016/j.apcata.2004.11.033
- Xiao Z., Wang X., Xiu J., Wang Y., Williams C.T., Liang C. Synergetic effect between Cu0 and Cu+ in the Cu-Cr catalysts for hydrogenolysis of glycerol // Catal. Today. 2014. V. 234. P. 200–207. https://doi.org/10.1016/j.cattod.2014.02.025
- Porukova I., Samoilov V., Lavrentev V., Ramazanov D., Maximov A. Hydrogenolysis of bio-glycerol over in situ gener-ated nanosized Cu–ZnO catalysts // Catalysts. 2024. V. 14, № 12. ID 908. https://doi.org/10.3390/catal14120908
- Li T., Fu C., Qi J., Pan J., Chen S., Lin J. Effect of zinc incorporation manner on a Cu–ZnO–Al2O3 glycerol hydrogenation catalyst // Reac. Kinet. Mech. Cat. 2013. V. 109. P. 117–131. https://doi.org/10.1007/s11144-012-0538-x
- Zhou Z., Li X., Zeng T., Hong W., Cheng Z., Yuan W. Kinetics of hydrogenolysis of glycerol to propylene glycol over Cu–ZnO–Al2O3 catalysts // Chin. J. Chem. Eng. 2010. V. 18, № 3. P. 384–390. https://doi.org/10.1016/S1004-9541(10)60235-2
- Gandarias I., Arias P.L., Requies J., El Doukkali M., Güemez M.B. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source // J. Catal. 2011. V. 282, № 1. P. 237–247. https://doi.org/10.1016/j.jcat.2011.06.020
- Moreira A.B.F., Bruno A.M., Souza M.M.V.M., Manfro R.L. Continuous production of lactic acid from glycerol in alka-line medium using supported copper catalysts // Fuel Process. Technol. 2016. V. 144. P. 170–180. https://doi.org/10.1016/j.fuproc.2015.12.025
- Porukova I., Samoilov V., Ramazanov D., Kniazeva M., Maximov A. In situ-generated, dispersed Cu catalysts for the catalytic hydrogenolysis of glycerol // Molecules. 2022. V. 27, № 24. ID 8778. https://doi.org/10.3390/molecules27248778
- Beerthuis R., Visser N.L., van der Hoeven J.E.S., Ngene P., Deeley J.M.S., Sunley G.J., de Jong K.P., de Jongh P.E. Man-ganese oxide promoter effects in the copper-catalyzed hydrogenation of ethyl acetate // J. Catal. 2021. V. 394. P. 307–315.
- https://doi.org/10.1016/j.jcat.2020.11.003 Бухтияров В.И., Слинько М.Г. Металлические наносистемы в катализе // Успехи химии. 2001. Т. 70, № 2. С. 167–181. https://doi.org/10.1070/RC2001v070n02ABEH000 637 [Bukhtiyarov V.I., Slin'ko M.G. Metallic nanosystems in catalysis // Russ. Chem. Rev. 2001. V. 70, № 2. P. 147–159. https://doi.org/10.1070/RC2001v070n02ABEH000 637]
Supplementary files
