CATALYTIC ACTIVITY OF PETROLEUM METAL PORPHYRINS IN OXIDATION OF ALKENES AND ALCOHOLS
- Authors: Tazeev D.I.1, Mironov N.A.1, Milordof D.V.1, Tazeeva E.G.1, Yakubova S.G.1, Yakubov M.R.1
-
Affiliations:
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Issue: Vol 65, No 3 (2025)
- Pages: 173-181
- Section: Articles
- URL: https://journal-vniispk.ru/0028-2421/article/view/287016
- DOI: https://doi.org/10.31857/S0028242125030016
- EDN: https://elibrary.ru/LCTYOA
- ID: 287016
Cite item
Abstract
In the present work, spectrally pure free porphyrin ligands were obtained directly from petroleum asphaltenes for the first time. The complexes synthesized from them with various metals, such as cobalt, nickel, copper, and zinc, have been characterized by UV-visible spectroscopy, MALDI, and IR spectroscopy. The possibility of using these metal complexes in the reactions of catalytic epoxidation of alkenes and oxidation of alcohols is shown. Petroleum porphyrins of cobalt proved to be effective catalysts for these processes, whereas petroleum porphyrins of copper, nickel, and zinc showed no catalytic activity.
Full Text

About the authors
Damir I. Tazeev
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Author for correspondence.
Email: tazeevexc4@yahoo.com
ORCID iD: 0000-0002-7074-6508
SPIN-code: 8875-2280
кандидат химических наук, младший научный сотрудник лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8Nikolay A. Mironov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: n_mir@mail.ru
ORCID iD: 0000-0003-1519-6600
SPIN-code: 7668-7927
кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8Dmitry V. Milordof
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: milordoff@ya.ru
ORCID iD: 0000-0003-2665-526X
кандидат химических наук, научный сотрудник лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8Elvira G. Tazeeva
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: tazeeva_elvira@mail.ru
ORCID iD: 0000-0002-6419-708X
младший научный сотрудник лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8Svetlana G. Yakubova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: yakubovasg@mail.ru
ORCID iD: 0000-0002-2845-2573
кандидат химических наук, старший научный сотрудник лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8Makhmut R. Yakubov
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: yakubovmr@mail.ru
ORCID iD: 0000-0003-0504-5569
доктор химических наук, доцент, заместитель руководителя института, главный научный сотрудник, заведующий лаборатории Переработки нефти и природных битумов
Russian Federation, 420088, Russia, Kazan, Arbuzov str., 8References
- Che C.M., Huang J.S. Metalloporphyrin-based oxidation systems: From biomimetic reactions to application in organic synthesis. Chem. Commun. 2009. №. 27. P. 3996-4015. https://doi.org/10.1039/b901221d
- Hu X., Huang Z, Gu G., Wang L., Chen B. Heterogeneous catalysis of the air oxidation of thiols by the cobalt porphyrin intercalated into a phosphatoantimonic acid host. J. Mol. Catal. A Chem. 1998. V. 132. P. 171-179. https://doi.org/10.1016/S1381-1169(97)00240-9
- Hassanein M., Gerges S., Abdo M., El-Khalafy S. Catalytic activity and stability of anionic and cationic water soluble cobalt(II) tetraarylporphyrin complexes in the oxidation of 2-mercaptoethanol by molecular oxygen. J. Mol. Catal. A Chem. 2005. V. 240. P. 22-26. https://doi.org/10.1016/j.molcata.2005.05.043
- Ehsani M.R., Safadoost A.R., Avazzadeh R., Barkhordari A. Kinetic study of ethyl mercaptan oxidation in presence of Merox catalyst. Iran. J. Chem. Chem. Eng. 2013. V. 32. P. 71-80.
- Payamifar S., Abdouss M., Poursattar A. An overview of porphyrin-based catalysts for sulfide oxidation reactions. Polyhedron. 2025. V. 269. 117389. https://doi.org/10.1016/j.poly.2025.117389
- Raveena R., Bajaj A., Tripathi A., Kumari P. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations, SynOpen, 2025. https://doi.org/10.1055/a-2541-6382
- Nhi B.D., Akhmadullin R.M., Akhmadullina A.G., Samuilov Y.D., Aghajanian S.I. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity. ChemPhysChem. 2013. V. 14. P. 4149-4157. https://doi.org/10.1002/cphc.201300733
- Estrada-Montano A.S., Gomez-Benitez V., Camacho-Davila A., Rivera E, Morales-Morales D., Zaragoza-Galan G. Metalloporphyrins: Ideal catalysts for olefin epoxidations. Journal of Porphyrins and Phthalocyanines. 2022. V. 26. № 12. P. 821-836. https://doi.org/10.1142/s1088424622300051
- Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S. Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. Chem. Soc. Rev. 2011. V. 40. P. 1950-1975. https://doi.org/10.1039/c0cs00142b
- Costas M. Selective C-H oxidation catalysed by metalloporphyrins. Coord. Chem. Rev. 2011. V. 255. P. 2912-2932. https://doi.org/10.1016/j.ccr.2011.06.026
- Le Maux P., Srour H.F., Simonneaux G. Enantioselective water-soluble iron-porphyrin-catalysed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate. Tetrahedron. 2012. V. 68. P. 5824-5828. https://doi.org/10.1016/j.tet.2012.05.014
- Haber J., Matachowski L., Pamin K., Poltowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system. J. Mol. Catal. A Chem. 2003. V. 198. P. 215-221. https://doi.org/10.1016/S1381-1169(02)00688-X
- Guo, C.C.; Liu, X.Q.; Liu, Q.; Liu, Y.; Chu, M.F.; Lin, W.Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. J. Porphyr. Phthalocyanines. 2009. V. 13. P. 1250-1254. https://doi.org/10.1142/S1088424609001613
- Nakagaki S., Ferreira G., Ucoski G., Dias de Freitas Castro K. Chemical reactions catalysed by metalloporphyrin-based metal-organic frameworks. Molecules. 2013. V. 18. P. 7279-7308. https://doi.org/10.3390/molecules18067279
- Barona-Castaño J.C., Carmona-Vargas C.C., Brocksom T.J., de Oliveira K.T. Porphyrins as catalysts in scalable organic reactions. Molecules. 2016. V. 21. № 3. P. 310. https://doi.org/10.3390/molecules21030310
- Zhang J.L., Che C.M. Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes. Organic Letters. 2002. V. 4. № 11. P. 1911-1914. https://doi.org/10.1021/ol0259138
- Yu X.Q., Huang J.S., Yu W.Y., Che C.M. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity. J. Am. Chem. Soc. 2000. V. 122. P. 5337-5342. https://doi.org/10.1021/ja000461k
- Zhang J.L., Zhou H.B., Huang J.S., Che C.M. Dendritic ruthenium porphyrins: A new class of highly selective catalysts for alkene epoxidation and cyclopropanation. Chem. Eur. J. 2002. V. 8. P. 1554-1562. https://doi.org/10.1002/1521-3765(20020402)8:7<1554::AID-CHEM1554>3.0.CO;2-R
- Zhang J.L., Che C.M. Dichlororuthenium(IV) complex of meso‐tetrakis(2,6‐dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron‐deficient alkenes by using 2,6‐dichloropyridine N‐oxide. Chem. Eur. J. 2005. V. 11. P. 3899-3914. https://doi.org/10.1002/chem.200401008
- Nam W., Oh S., Sun Y.J., Kim J., Kim W., Woo S.K. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and H2O2 in protic solvents. J. Org. Chem. 2003. V. 68. P. 7903-7906. https://doi.org/10.1021/jo034493c
- Collman J., Zhang X., Lee V., Uffelman E., Brauman J. Regioselective and enantioselective epoxidation catalysed by metalloporphyrins. Science. 1993. V. 261. P. 1404-1411. https://doi.org/10.1126/science.8367724
- Groves J.T., Myers R.S. Catalytic asymmetric epoxidations with chiral iron porphyrins. J. Am. Chem. Soc. 1983. V. 105. P. 5791-5796. https://doi.org/10.1021/ja00356a016
- Rose E., Andrioletti B., Zrig S., Quelquejeu-Etheve M. Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts. Chem. Soc. Rev. 2005. V. 34. P. 573-583. https://doi.org/10.1039/b405679p
- Stephenson N.A., Bell A.T. Mechanistic insights into iron porphyrin-catalysed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity. J. Mol. Catal. A Chem. 2007. V. 275. P. 54-62. https://doi.org/10.1016/j.molcata.2007.05.005
- Cunningham I.D., Danks T.N., Hay J.N., Hamerton I., Gunathilagan S. Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide. Tetrahedron. 2001. V. 57. P. 6847-6853. https://doi.org/10.1016/S0040-4020(01)00639-1
- Mironov N.A., Milordov D.V., Abilova G.R., Yakubova S.G., Yakubov, M.R. Methods for studying petroleum porphyrins (review). Petrol. Chem. 2019. V. 59. № 10. P. 1077-1091. https://doi.org/10.1134/S0965544119100074
- Zhao X., Xu C., Shi Q. Porphyrins in Heavy Petroleums: A Review. In Structure and modeling of complex petroleum mixtures. Structure and Bonding. Springer. 2015. V. 168. P. 39-70. https://doi.org/10.1007/430_2015_189
- McKay Rytting B., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. Ultrahigh-purity vanadyl petroporphyrins. Energy & Fuels. 2018. V. 32. № 5. P. 5711-5724. https://doi.org/10.1021/acs.energyfuels.7b03358
- Tazeev D., Musin L., Mironov N., Milordov D., Tazeeva E., Yakubova S., Yakubov M. Complexes of transition metals with petroleum porphyrin ligands: preparation and evaluation of catalytic ability. Сatalysts. 2021. V. 11. P. 1506. https://doi.org/10.3390/catal11121506
- Milordov D.V., Usmanova G.Sh., Yakubov M.R., Yakubova S.G., Romanov G.V. Comparative analysis of extractive methods of porphyrin separation from heavy oil asphatenes. Chemistry and Technology of Fuels and Oils. 2013. V. 49 № 3. P. 29-32. https://doi.org/10.1007/s10553-013-0435-7
- Yakubov M.R., Milordov D.V., Yakubova S.G., Borisov D.N., Gryaznov P.I., Usmanova G.Sh. Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel. Petroleum Science and Technology. 2015. V. 33 № 9. P. 992-998. https://doi.org/10.1080/10916466.2015.1030078
Supplementary files
