Picocyanobacteria in the Ob Estuary and the Adjacent Kara Sea Shelf in late Autumn Season: Composition, Distribution and Functional Role
- 作者: Belevich T.A.1, Demidov A.B.2, Vorob’eva O.V.1,3, Polukhin A.A.2, Flint M.V.2
-
隶属关系:
- Moscow State University
- Shirshov Institute of Oceanology, Russian Academy of Science
- Russian Federal Research Institute of Fisheries and Oceanography
- 期: 卷 64, 编号 6 (2024)
- 页面: 950-959
- 栏目: Морская биология
- URL: https://journal-vniispk.ru/0030-1574/article/view/284776
- DOI: https://doi.org/10.31857/S0030157424060074
- EDN: https://elibrary.ru/FILLJQ
- ID: 284776
如何引用文章
详细
The spatial distribution of picophytoplankton (Pico) abundance and biomass, as well as the distribution of PE-rich and PC-rich picocyanobacteria (PCB), was investigated in the waters of the outer Ob estuary and the adjacent shelf of the Kara Sea in late autumn during the 92nd cruise of the R/V “Akademik Mstislav Keldysh”. The Pico chlorophyll “a” and its contribution to total chlorophyll ‘a”, total phytoplankton primary production (PP) and Pico PP were estimated. Pico abundance and biomass varied from 8.18 to 46.3 ×106 cells/l and from 3.74 to 20.48 µg C/l, respectively. The plankton picofraction was dominated by PCB of the genus Synechococcus, its contribution to the total biomass of Pico ranged from 81 to 94%. The abundance of PC-rich Synechococcus varied from 4.02 to 29.21 ×106 cells/l, whereas the abundance of PE-rich Synechococcus was significantly lower (p<0.001) and varied from 0.98 to 8.0 ×106 cells/l. The contribution of Pico to total phytoplankton chlorophyll “a” did not exceed 11% on average. The values of total PP and PP Pico were low, averaging 3.99 ± 1.53 mg C/m3 and 0.77 ± 0.36 mg C/m3 per day, respectively. The contribution of PP Pico to total PP ranged from 14% to 33%. Factors determining the spatial distribution of PE- and PC-rich Synechococcus and production parameters of Pico were identified.
作者简介
T. Belevich
Moscow State University
编辑信件的主要联系方式.
Email: 3438083@list.ru
俄罗斯联邦, Moscow
A. Demidov
Shirshov Institute of Oceanology, Russian Academy of Science
Email: 3438083@list.ru
俄罗斯联邦, Moscow
O. Vorob’eva
Moscow State University; Russian Federal Research Institute of Fisheries and Oceanography
Email: 3438083@list.ru
俄罗斯联邦, Moscow; Moscow
A. Polukhin
Shirshov Institute of Oceanology, Russian Academy of Science
Email: 3438083@list.ru
俄罗斯联邦, Moscow
M. Flint
Shirshov Institute of Oceanology, Russian Academy of Science
Email: 3438083@list.ru
俄罗斯联邦, Moscow
参考
- Белевич Т.А., Ильяш Л.В., Демидов А.Б. и др. Распределение пикофитопланктона на Обском разрезе и в западной части Карского моря // Океанология. 2019а. Т. 59. № 6. С. 964–973.
- Белевич Т.А., Ильяш Л.В., Чульцова А.Л., Флинт М.В. Пространственное распределение планктонных пикоцианобактерий на шельфе Карского моря, моря Лаптевых и Восточно-Сибирского моря // Вестник Московского университета. Серия 16: Биология. 2019б. Т. 74. № 4. С. 247–253.
- Белевич Т.А., Милютина И.А., Троицкий А.В. и др. Пикофитопланктон залива Благополучия (архипелаг Новая Земля) и прилегающего района Карского моря // Океанология. 2020. Т. 60. № 4. С. 545–555.
- Иванов В.В. Водный баланс и водные ресурсы суши Арктики // Тр. ААНИИ. 1976. Т. 323. С. 4–24.
- Иванов В.В. Гидрологический режим низовьев и устьев рек Западной Сибири и проблема оценки его изменений под влиянием территориального перераспределения водных ресурсов // Проблемы Арктики и Антарктики. 1980. Вып. 55. С. 20–43.
- Иванов В.В., Осипова И.В. Сток Обских вод в море и его многолетняя изменчивость // Тр. ААНИИ. 1972. Т. 297. С. 86–91.
- Лапин С.А. Особенности формирования пресноводного стока в эстуарных системах Оби и Енисея // Труды ВНИРО. 2017. Т. 166. С. 139–150.
- Мошаров С.А. Распределение первичной продукции и хлорофилла “а” в Карском море в сентябре 2017 г. // Океанология. 2010. Т. 50. № 6. С. 933–941.
- Современные методы гидрохимических исследований океана / Ред. Бордовский О.К., Иваненков В.Н. М.: ИО РАН, 1992. 200 с.
- Становой В.В. Влияние приливных явлений на изменчивость термохалинной структуры в северной части Обской губы // Тр. ААНИИ. 1984. Т. 394. С. 19–22.
- Становой В.В. Приливные явления в Обской губе // Изучение природных условий низовьев и устьев рек арктической зоны для гидрометеорологического обеспечения народного хозяйства. Л.: Гидрометиздат, 1985. Т. 2. С. 21–23.
- Суханова И.А., Флинт М.В., Сахарова Е.Г. и др. Фитоценозы Обского эстуария и Карского шельфа в поздневесенний сезон // Океанология. 2018. Т. 58. № 6. С. 882–898.
- Суханова И.А., Флинт М.В., Федоров А.В. и др. Фитопланктон Обского эстуария (Карское море) в предзимний период // Океанология. 2024. Т. 64. С. 561–569.
- Arar E.J., Collins G.B. Method 445.0. in vitro determination of chlorophyll “a” and pheophytin “a” in marine and freshwater algae by fluorescence. Revision 1.2. Cincinnati: U.S. Environmental Protection Agency, 1997. 22 p.
- Belevich T.A., Demidov А.B., Makkaveev P.N. et al. Picophytoplankton distribution along Khatanga Bay-shelf-continental slope environment gradients in the western Laptev Sea // Heliyon. 2021. V. 7. № 2. P. 1–9.
- Belevich, T.A., Milyutina, I.A., Troitsky, A.V. Picocyanobacteria in Estuaries of Three Siberian Rivers and Adjacent Shelves of Russian Arctic Seas: Genetic Diversity and Distribution // Diversity. 2023. 15. 1049.
- Chen F., Wang K., Kan J. et al. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences // Appl. Environ. Microbiol. 2006. 72. P. 2239–2243.
- Cottrell M.T., Kirchman D.L. Photoheterotrophic microbes in the arctic ocean in summer and winter // Appl. Environ. Microbiol. 2009. V. 75. N15. P. 4958–4966.
- Demidov A.B., Kopelevich O.V., Mosharov S.A. et al. Modelling Kara Sea phytoplankton primary production: development and skill assessment of regional algorithms // J. Sea Res. 2017. V. 125. P. 1–17.
- Demidov A.B., Mosharov S.A., Makkaveev P.N. Patterns of the Kara Sea primary production in autumn: Biotic and abiotic forcing of subsurface layer // J. Mar. Sys. 2014. V. 132. P. 130–149. http://dx.doi.org/10.1016/j.jmarsys.2014.01.014
- Demidov A.B., Sukhanova I.N., Belevich T.A. et al. Size-fractionated surface phytoplankton in the Kara and Laptev seas: environmental control and spatial variability // Mar. Ecol. Progr. Ser. 2021. V. 664. P. 59–77.
- DuRand M.D., Olson R.J., Chisholm S.W. Phytoplankton population dynamics at the Bermuda Atlantic timeseries station in the Sargasso Sea // Deep-Sea Research II. 2001. V. 48. P. 1983–2003.
- Egge J.K., Aksnes D.L. Silicate as regulating nutrient in phytoplankton competition // Mar. Ecol. Progr. Ser. 1992. V. 83. P. 281–289.
- Finkel Z.V., Beardall J., Flynn K.J. et al. Phytoplankton in a changing world: cell size and elemental stoichiometry // J. Plankton Res. 2010. 32. Р. 119–137.
- Fisher T.R., Peele E.R., Ammerman J.W. et al. Nutrient limitation of phytoplankton in Chesapeake Bay // Mar. Ecol. Progr. Ser. 1992. V. 82. P. 51–63.
- Gordeev V.V., Martin J.M., Sidorov I.S et al. A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean // Amer. J. Sci. 1996. V. 296. P. 664–691.
- Hagstrom A., Azam F., Andersson A. et al. Microbial loop in an oligotrophic pelagic marine ecosystem: possible roles of cyanobacteria and nanoflagellates in the organic fluxes // Mar. Ecol. Prog. Ser. 1988. 49. Р. 171–178.
- Harms I.H., Hubner U., Backhaus J.O. et al. Salt intrusions in Siberian river estuaries: Observations and model experiments in Ob and Yenisei // Proc. Mar. Sci. 2003. V. 6. P. 27–46.
- Harms I.N., Karcher M.J. Modelling the seasonal variability of circulation and hydrography in the Kara Sea // J. Geophys. Res. 1999. V. 104. № (C6). P. 13431–13448.
- Haverkamp T., Acinas S.G., Doeleman M. et al. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons // Environ. Microbiol. 2008. 10. P. 174–188.
- Jiang T., Chai C., Wang J. et al. Temporal and spatial variations of abundance of phycocyanin- and phycoerythrin-rich Synechococcus in Pearl River Estuary and adjacent coastal area // J. Ocean Univ. China. 2016. V. 15. P. 897–904.
- Kirk J.T.O. Light and photosynthesis in aquatic ecosystems. 3rd edition. Cambridge: Cambridge Univ. Press, 2011. 649 p.
- Li S., Dong Y., Sun X. et al. Seasonal and spatial variations of Synechococcus in abundance, pigment types, and genetic diversity in a temperate semi-enclosed bay // Front. Microbiol. 2024. 14. 1322548.
- Li W.K.W. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting // Limnol. Oceanogr. 1994. V. 39. № 1. P. 169–175.
- Moreira-Turcq P.F., Martin J.M. Characterisation of fine particles by flow cytometry in estuarine and coastal Arctic waters // J. of Sea Research. 1998. 39. P. 217–226.
- Novotny A., Serandour B., Kortsch S. et al. DNA metabarcoding highlights cyanobacteria as the main source of primary production in a pelagic food web model // Sci. Adv. 2023. 9. eadg1096.
- Parsons T.R. A manual of chemical & biological methods for seawater analysis. Elsevier, 2013.
- Partensky F., Blanchot J., Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review // Bull. Inst. Oceanogr. Monaco. 1999. 19. P. 457–476.
- Paulsen M.L., Doré H., Garczarek L. et al. Synechococcus in the Atlantic gateway to the Arctic Ocean // Front. Mar. Sci. 2016. Vol. 3. 191
- Peterson B.J., Holmes R.M., McClelland J.W. et al. Increasing River Discharge to the Arctic Ocean // Science. 2002. 298. 2171.
- Platt T., Rao D.V.S., Irwin B. Photosynthesis of picoplankton in the oligotrophic ocean // Nature. 1983. 301. P. 702–704.
- Sakshaugh E., Slagstad D. Light and productivity of phytoplankton in polar marine ecosystems: a physiological review // Polar Res. 1991. 10. 1. P. 69–87.
- Six C., Thomas J.-C., Garczarek L. et al. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study // Genome Biol. 2007. V. 8. № 12. Art. ID R259. https://doi.org/10.1186/gb-2007-8-12-r259
- Stain R. Circum Arctic river discharge and its geological record // Int. J. Earth Sciences. 2000. V. 89. P. 447–449.
- Steemann Nielsen E. The use of radioactive carbon (C14) for measuring organic production in the sea // J. Cons. Perm. Ins. Explor. Mer. 1952. № 18. P. 117–140.
- Stomp M., Huisman J., Vőrős L. et al. Colourful coexistence of red and green picocyanobacteria in lakes and seas // Ecology Letters. 2007. 10. P. 290–298.
- Stomp M., Huisman J., de Jongh F. et al. Adaptive divergence in pigment composition promotes phytoplankton biodiversity //. Nature. 2004. 432. P. 104–107.
- Tremblay J.É., Michel C., Hobson K.A. et al. Bloom dynamics in early-opening water of the Arctic Ocean // Limnol. Oceanogr. 2006. 51. P. 900–912.
- Uysal Z. Pigments, size and distribution of Synechococcus spp. in the Black Sea // J. Mar. Syst. 2000. V. 24. № 3–4. P. 313–326.
- Verity P.G., Robertson C.Y., Tronzo C.R. et al. Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton // Limnol. Oceanogr. 1992. 37. P. 1434–1446.
- Voros L., Callieri C., Balogh K.V. et al. Freshwater picocyanobacteria along a trophic gradient and light quality range // Hydrobiologia. 1998. 370. P. 117–125.
- Waleron M., Waleron K., Vincent W.F. et al. Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean // FEMS Microbiol. Ecol. 2007. Vol. 59. N2. P. 356–365.
- Waterbury J.B., Watson F.W., Valois F.W. et al. Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In T. Platt and W.K.W. Li (ed.) / Photosynthetic Picoplankton. Ottawa: Can. Dep. Fish. Oceans. 1986. P. 71–120.
- Xia X., Guo W., Tan S., Liu H. Synechococcus assemblages across the salinity gradient in a salt wedge estuary // Front. Microbiol. 2017. V. 8. Art. ID1254.
补充文件
