🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

MDS codes in Doob graphs


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Doob graph D(m, n), where m > 0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K4 on four vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m3/36+7m2/24+11m/12+1−(m mod 2)/8−(m mod 3)/9 MDS codes with code distance 2m + n in D(m, n), two codes with distance 3 in each of D(2, 0) and D(2, 1) and with distance 4 in D(2, 1), and one code with distance 3 in each of D(1, 2) and D(1, 3) and with distance 4 in each of D(1, 3) and D(2, 2).

About the authors

E. A. Bespalov

Sobolev Institute of Mathematics

Author for correspondence.
Email: bespalovpes@mail.ru
Russian Federation, Novosibirsk

D. S. Krotov

Sobolev Institute of Mathematics

Email: bespalovpes@mail.ru
Russian Federation, Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Inc.