MDS codes in Doob graphs
- Авторлар: Bespalov E.A.1, Krotov D.S.1
-
Мекемелер:
- Sobolev Institute of Mathematics
- Шығарылым: Том 53, № 2 (2017)
- Беттер: 136-154
- Бөлім: Coding Theory
- URL: https://journal-vniispk.ru/0032-9460/article/view/166377
- DOI: https://doi.org/10.1134/S003294601702003X
- ID: 166377
Дәйексөз келтіру
Аннотация
The Doob graph D(m, n), where m > 0, is a Cartesian product of m copies of the Shrikhande graph and n copies of the complete graph K4 on four vertices. The Doob graph D(m, n) is a distance-regular graph with the same parameters as the Hamming graph H(2m + n, 4). We give a characterization of MDS codes in Doob graphs D(m, n) with code distance at least 3. Up to equivalence, there are m3/36+7m2/24+11m/12+1−(m mod 2)/8−(m mod 3)/9 MDS codes with code distance 2m + n in D(m, n), two codes with distance 3 in each of D(2, 0) and D(2, 1) and with distance 4 in D(2, 1), and one code with distance 3 in each of D(1, 2) and D(1, 3) and with distance 4 in each of D(1, 3) and D(2, 2).
Авторлар туралы
E. Bespalov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: bespalovpes@mail.ru
Ресей, Novosibirsk
D. Krotov
Sobolev Institute of Mathematics
Email: bespalovpes@mail.ru
Ресей, Novosibirsk
Қосымша файлдар
