On risk concentration for convex combinations of linear estimators


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider the estimation problem for an unknown vector β ∈ Rp in a linear model Y = + σξ, where ξ ∈ Rn is a standard discrete white Gaussian noise and X is a known n × p matrix with np. It is assumed that p is large and X is an ill-conditioned matrix. To estimate β in this situation, we use a family of spectral regularizations of the maximum likelihood method βα(Y) = Hα(XTX) β(Y), α ∈ R+, where β(Y) is the maximum likelihood estimate for β and {Hα(·): R+ → [0, 1], α ∈ R+} is a given ordered family of functions indexed by a regularization parameter α. The final estimate for β is constructed as a convex combination (in α) of the estimates βα(Y) with weights chosen based on the observations Y. We present inequalities for large deviations of the norm of the prediction error of this method.

Авторлар туралы

G. Golubev

Kharkevich Institute for Information Transmission Problems; CNRS

Хат алмасуға жауапты Автор.
Email: golubev.yuri@gmail.com
Ресей, Moscow; Marseille

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2016