Some q-ary Cyclic Codes from Explicit Monomials over \(\mathbb{F}_{q}m\)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Cyclic codes as a subclass of linear codes have practical applications in communication systems, consumer electronics, and data storage systems due to their efficient encoding and decoding algorithms. The objective of this paper is to construct some cyclic codes by the sequence approach. More precisely, we determine the dimension and the generator polynomials of three classes of q-ary cyclic codes defined by some sequences with explicit polynomials over \(\mathbb{F}_{q}m\). The minimum distance of such cyclic codes is also discussed. Some of these codes are optimal according to code tables. Moreover, the third class of cyclic codes provides some answers for Open Problem 3 proposed by Ding and Zhou in [1].

Авторлар туралы

L. Li

School of Mathematics

Хат алмасуға жауапты Автор.
Email: lilanqiang716@126.com
ҚХР, Hefei, Anhui

S. Zhu

School of Mathematics

Email: lilanqiang716@126.com
ҚХР, Hefei, Anhui

L. Liu

School of Mathematics

Email: lilanqiang716@126.com
ҚХР, Hefei, Anhui

X. Kai

School of Mathematics

Email: lilanqiang716@126.com
ҚХР, Hefei, Anhui

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2019