О влиянии распределения удельной скорости диссипации на эффективность массопереноса в аппаратах с жидкофазными средами

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Выполнен теоретический анализ влияния распределения локальной удельной скорости диссипации энергии на удельную поверхность контакта фаз, поверхностный и объемный коэффициенты массоотдачи в аппаратах с гетерофазными процессами и жидкой сплошной фазой, а также на качество смешения в аппаратах с гомофазными реакциями в жидкой фазе. Показано, что среднее по объему аппарата значение удельной скорости диссипации энергии не является полноценным критерием для оценки полезного эффекта, поскольку не учитывает, с одной стороны, локальный уровень диссипации энергии в активных зонах, с другой стороны, особенности структуры потоков и локальное время пребывания в активных зонах, в зависимости от геометрии аппарата и способа ввода в него энергии. Обсуждаются предельные случаи: неравномерное распределение энергии при наличии небольшой зоны объема с высокой скоростью диссипации; идеально равномерное распределение энергии по всему объему аппарата. В первом случае существенная часть объема используется неэффективно, во втором случае затрачивается чрезмерное количество энергии. В связи с этим рассматриваются концепции дозированного распределенного ввода энергии для длительных процессов и максимальной концентрации энергии в микрообъеме для быстропротекающих процессов.

Full Text

Restricted Access

About the authors

Р. Ш. Абиев

Санкт-Петербургский государственный технологический институт (технический университет)

Author for correspondence.
Email: abiev.rufat@gmail.com
Russian Federation, Санкт-Петербург

References

  1. Teychené S., Rodríguez-Ruiz I., Ramamoorthy R.K. Reactive crystallization: From mixing to control of kinetics by additives// Current Opinion in Colloid & Interface Science. 2020. V. 46. P. 1. https://doi.org/10.1016/j.cocis.2020.01.003;
  2. Bałdyga J. Mixing and fluid dynamics effects in particle precipitation processes. KONA Powder Part J 2016, 33:127.
  3. Villermaux J. Micromixing phenomena in stirred reactors. Encyclopedia of fluid mechanics. Houston: Gulf Publishing Company. 1986
  4. Patil S., Kate P.R., Deshpande J.B., Kulkarni A.A. Quantitative understanding of nucleation and growth kinetics of silver nanowires// Chem. Eng. J. 2021. V. 414. I. 128711. https://doi.org/10.1016/j.cej.2021.128711
  5. Tanimu A., Jaenicke S., Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications// Chem. Eng. J. 2017. V. 327. P. 792. https://doi.org/10.1016/j.cej.2017.06.161
  6. Vacassy R., Lemaître J., Hofmann H., Gerlings J.H. Calcium carbonate precipitation using new segmented flow tubular reactor// AIChE J. 2000. V. 46. P. 1241.
  7. Zhao C.-X., He L., Qiao S.Z., Middelberg A.P.J. Nanoparticle synthesis in microreactors // Chem. Eng. Sci. 2011. Vol. 66. P. 1463. https://doi.org/10.1016/j.ces.2010.08.039
  8. Nightingale A.M., deMello J.C. Segmented Flow Reactors for Nanocrystal Synthesis // Advanced Materials. 2013. V. 25. № 13. P. 1813. http://dx.doi.org/10.1002/adma.201203252
  9. Abiev R.S., Kudryashova Y.S., Zdravkov A.V., Fedorenko N.Y. Micromixing and Co-Precipitation in Continuous Microreactors with Swirled Flows and Microreactors with Impinging Swirled Flows // Inorganics. 2023. V. 11. Paper 49. https://doi.org/10.3390/inorganics11020049
  10. Paseta L., Seoane B., Julve D. et al. Accelerating the Controlled Synthesis of Metal–Organic Frameworks by a Microfluidic Approach: A Nanoliter Continuous Reactor. ACS Applied Materials & Interfaces. 2013. V. 5 (19). P. 9405.
  11. Mu Z., Zhu Y., Li B. et al. Covalent Organic Frameworks with Record Pore Apertures // Journal of the American Chemical Society. 2022. V. 144 (11). P. 5145.
  12. Stock N., Biswas S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chemical Reviews. 2012. V. 112 (2). P. 933.
  13. Klapötke Th.M., Sabaté C.M., Stierstorfer J. Neutral 5-nitrotetrazoles: easy initiation with low pollution // New J. Chem. 2009. V. 33. P. 136. https://doi.org/10.1039/b812529e
  14. Abiev R.Sh., Makusheva I.V. Effect of Macro- and Micromixing on Processes Involved in Solution Synthesis of Oxide Particles in High-Swirl Microreactors // Theor. Found. Chem. Eng. 2022. V. 56. P. 141. https://doi.org/10.1134/S0040579522020014
  15. Abiev R.Sh., Makusheva I.V., Mironova A.I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer // Chem. Eng. & Proc.: Proc. Intens. 2024. CEP 109829 https://doi.org/10.1016/j.cep.2024.109829
  16. Ottino J.M., Ranz W.E., Macosko C.W. A lamellar model for analysis of liquid-liquid mixing// Chem. Eng. Sci. 1979. V. 34. Р. 877.
  17. Bałdyga J., Rozen A., Mostert F. A model of laminar micromixing with application to parallel chemical reactions// Chem. Eng. J. 1998. V. 69. Р. 7.
  18. Falk L., Commenge J.-M. Performance comparison of micromixers // Chem. Eng. Sci. 2010. V. 65. P. 405. https://doi.org/10.1016/j.ces.2009.05.045
  19. Fournier M.-C., Falk L., Villermaux J. A new parallel competing reaction system for assessing micromixing efficiency – Determination of micromixing time by a simple mixing model // Chem. Eng. Sci. 1996. V. 51. № 23. P. 5187. https://doi.org/10.1016/S0009-2509(96)00340-5
  20. Commenge J.-M., Falk L. Villermaux–Dushman protocol for experimental characterization of micromixers // Chem. Eng. and Proc.: Proc. Intens. 2011. V. 50. № 10. P. 979. https://doi.org/10.1016/j.cep.2011.06.006.
  21. Jasińska M. Test reactions to study efficiency of mixing // Chem. Process Eng. 2015. № 36 (2). Р. 171.
  22. Guichardon P., Falk L. Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: experimental procedure// Chem. Eng. Sci. 2000. V. 55. P. 4233. doi: 10.1016/S0009-2509(00)00068-3
  23. Abiev R. Sh., Sirotkin A.A. Influence of Hydrodynamic Conditions on Micromixing in Microreactors with Free Impinging Jets// Fluids. 2020. V. 5. Iss. 4. Р. 179 doi: 10.3390/fluids5040179;
  24. Abiev R. Sh., Nikolaev A.M., Kovalenko A.S., Gorshkova Yu.E, Tsvigun N.V., Baranchikov A.E., Kopitsa G.P., Shilova O.A. One step synthesis of FeOx magnetic nanoparticles in the microreactor with intensively swirling flows// Chem. Eng. Res. and Des. 2024. V. 205 P. 335. https://doi.org/10.1016/j.cherd.2024.03.031
  25. Abiev R.S., Kudryashova A.K. Study of micromixing in a microreactor with countering intensively swirled flows. Theor. Found. Chem. Eng. 2024. 59 (2). [Абиев Р.Ш., Кудряшова А.К. Исследование микросмешения в микрореакторе с встречными интенсивно закрученными потоками// Теор. осн. хим. технол. 2024. Т. 59. № 2. С. 141].
  26. Соколов В.Н., Доманский И.В. Газожидкостные реакторы. Л.: Машиностроение, 1976.
  27. Barabash V.M., Abiev R.S., Kulov N.N. Theory and Practice of Mixing: A Review. Theor. Found. Chem. Eng. 2018. V. 52 № 4. Р. 473. https://doi.org/10.1134/S004057951804036X [Барабаш В.М., Абиев Р.Ш., Кулов Н.Н. Обзор работ по теории и практике перемешивания// Теор. основы хим. технол., 2018. Т. 52. № 4. С. 367. doi: 10.1134/S0040357118040024]
  28. Alopaeus V., Koskinen J., Keskinen K.I. Simulation of the Population Balances for Liquid-Liquid Systems in a Nonideal Stirred Tank, Part 1. Description and Qualitative Validation of the Model// Chem. Eng. Sci. 1999. № 54. Р. 5887.
  29. Albadi Y., Abiev R.S., Sirotkin A.A., Martinson K.D., Chebanenko M.I., Nevedomskyi V.N., Buryanenko I.V., Semenov V.G., Popkov V.I. Physicochemical and hydrodynamic aspects of GdFeO3 production using a free impinging-jets methods// Chem. Eng. and Proc.- Proc. Intens. 2021. №166. Р. 108473. https://doi.org/10.1016/j.cep.2021.108473
  30. Левеншпиль О. Инженерное оформление химических процессов М.: Химия, 1969. [Levenspiel O. Chemical Reaction Engineering, Third Edition. Wiley. 1999]
  31. Виестур У.Э., Кузнецов А.М., Савенков В.В. Системы ферментации. Рига: Зинатне, 1986. [Viesturs U.E., Kuznetsov A.M., Savenkov V.V. Fermentation Systems, Riga: Zinatne Press, 1986.].
  32. Александров И.А. Массопередача при ректификации и абсорбции многокомпонентных смесей. Л.: Химия, 1975 . [Aleksandrov I.A. Mass transfer at distillation and absorption of multicomponent mixtures. Leninigrad, Khimia. 1975. ].
  33. Heyouni A., Roustan M., Do-Quang Z. Hydrodynamics and mass transfer in gas–liquid flow through static mixers // Chem. Eng. Sci. 2002. № 57. Р. 3325.
  34. Abiev R.Sh., Galushko A.S. Hydrodynamics of pulsating flow type apparatus: simulation and experiments// Chem. Eng. J. 2013. V. 229. P. 285. doi: 10.1016/j.cej.2013.05.105
  35. Abiev R.Sh., Galushko A.S. Bubbles size and mass transfer in a pulsating flow type apparatus with gas-liquid mixture// Journal of Flow Chemistry. 2021. № 11. Р. 369. https://doi.org/10.1007/s41981-021-00177-y
  36. Vasilev M.P., Abiev R.Sh. Intensification of Droplet Disintegration for Liquid–Liquid Systems in a Pulsating Flow Type Apparatus by Adding an Inert Gas // Fluids. 2023. № 8. Р. 38. https://doi.org/10.3390/fluids8020038.
  37. Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J. Modelling local bubble size distributions in agitated vessels // Chem. Eng. Sci. 2007. № 62. Р. 721. doi: 10.1016/j.ces.2006.10.006m
  38. Alves S.S., Maia C.I., Vasconcelos J.M.T., Serralheiro A.J. Bubble size in aerated stirred tanks// Chem. Eng. J. 2002. № 89. Р. 109.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependence of the ratio of the micromixing time to the square of the characteristic size (tm/d2) on the Reynolds number for eight types of micromixers [18]. The dashed line corresponds to formula (7).

Download (61KB)
3. Fig. 2. Relationship between the segregation index Xs and mixing time tm in microreactors using the iodide-iodate method [18].

Download (3KB)
4. Fig. 3. Distribution of the relative energy dissipation rate (φi = εi/εave) and the relative volume of zones Vrel.i by zones of a reactor with a turbine stirrer (data from [28] were used).

Download (45KB)
5. Fig. 4. Diagram of the transformation of energy introduced into systems with a continuous liquid phase (liquid-liquid, liquid-gas, liquid-solid) taking into account the need to form an interphase surface.

Download (70KB)
6. Fig. 5. Bubble column fermenter (BCF) 2

Download (32KB)
7. Fig. 6. Tray column fermenter (TCF): 1 – body, 2 – plate, 3 – overflow pipe, 4, 5 – liquid inlet and outlet, 6, 7 – air inlet and outlet. The red dashed-dotted line outlines the zone of maximum shear stresses occurring near the holes in the plate. Above this zone – energy dissipation due to the work of the buoyant force during the movement of bubbles.

Download (46KB)
8. Fig. 7. Gas-lift loop column fermenter (GLCF): 1 – body, 2 – air ejection unit, 3 – zones of intensive gas dispersion, 4 – zones with free movement of gas-liquid flow.

Download (47KB)
9. Fig. 8. Typical character of the dependence of the specific rate of energy dissipation ε on the residence time in the apparatus τ in real apparatuses (a) and in an apparatus with a uniformly high specific rate of energy dissipation ε (b). The zone τact corresponds to the most intense local energy dissipation εloc.max.

Download (92KB)
10. Fig. 9. The nature of the dependence of the specific rate of energy dissipation ε on the residence time in the apparatus τ in the apparatus with repeated (pulse) effects on the processed medium. The zones τact correspond to the most intensive local energy dissipation εloc.max.

Download (33KB)
11. Fig. 10. Diagram of a flow-type pulsating apparatus [34, 35].

Download (62KB)
12. Fig. 11. Dependences of the Sauter bubble diameter (d32, m) on the specific energy dissipation rate (ε, W/kg) for a flow-through pulsating apparatus (1 – 8th section, 2 – average for PAPT) [35], an apparatus with a turbine mixer (3–6), Lightnin static mixers (7–9) [33], 3 – data from Laakkonen et al. [37], 4 – data from Calderbank [32], 5 – Heyouni correlation at φ = 6% [33]; 6 – data from Alves et al. [38] for coalescing systems; 7–9 – Lightnin structures 1–3, respectively [33].

Download (29KB)
13. Fig. 12. Dependence of the volumetric mass transfer coefficient on the specific energy dissipation rate (ε, W/kg): lines 1–3 – in the apparatus with Lightnin static mixers (structures 1–3, respectively) and in the flow-type pulsating apparatus (line 4) at φ = 6%.

Download (22KB)
14. Fig. 13. Dependence of the volumetric mass transfer coefficient kLa (1/s) on the average specific energy dissipation rate ε (W/kg) for gas-liquid reactors: bubble columns (1), apparatus with stirrers (2), static mixers (3) and PAPT (4) (regions 1–3 are constructed according to data from [33], region 4 – according to data from [35]).

Download (22KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».