Structural and functional characteristics of the brain and their role in the development of eating behaviour in obesity: A review

Cover Page

Cite item

Full Text

Abstract

Obesity is a major public health problem that requires new approaches. Despite all interventions, the behavioural and therapeutic interventions developed have demonstrated limited effectiveness in curbing the obesity epidemic. Findings from imaging studies of the brain suggest the existence of neural vulnerabilities and structural changes that are associated with the development of obesity and eating disorders. This review highlights the clinical relevance of brain neuroimaging research in obese individuals to prevent risky behaviour, early diagnosis, and the development of new safer and more effective treatments.

About the authors

Iuliia G. Samoilova

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0002-2667-4842

доктор медицинских наук, профессор заведующая кафедрой педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Daria V. Podchinenova

Siberian State Medical University

Author for correspondence.
Email: darvas_42@mail.ru
ORCID iD: 0000-0001-6212-4568

кандидат медицинских наук, доцент кафедры педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Mariia V. Matveeva

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0001-9966-6686

доктор медицинских наук, проф. кафедры педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Dmitry A. Kudlay

Sechenov First Moscow State Medical University (Sechenov University); National Research Center – Institute of Immunology

Email: darvas_42@mail.ru
ORCID iD: 0000-0003-1878-4467

член-кор. РАН, доктор медицинских наук, профессор кафедры фармакологии Института фармации, ведущий научный сотрудник лаборатории персонализированной медицины и молекулярной иммунологии №71

Russian Federation, Moscow; Moscow

Oxana A. Oleynik

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0002-2915-384X

кандидат медицинских наук, доцент кафедры педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Ivan V. Tolmachev

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0002-2888-5539

кандидат медицинских наук, доцент кафедры медицинской и биологической кибернетики

Russian Federation, Tomsk

Irina S. Kaverina

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0001-9748-482X

научный сотрудник научно-образовательной лаборатории «Бионические цифровые платформы» ФГБОУ ВО

Russian Federation, Tomsk

Tamara D. Vachadze

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0001-6384-1972

ординатор кафедры педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Margarita A. Kovarenko

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0002-5012-0364

кандидат медицинских наук, ассистент кафедры педиатрии с курсом эндокринологии

Russian Federation, Tomsk

Olga A. Loginova

Siberian State Medical University

Email: darvas_42@mail.ru
ORCID iD: 0000-0002-8836-0814

ординатор кафедры общей врачебной практики и поликлинической терапии

Russian Federation, Tomsk

References

  1. WHO European Regional Obesity Report 2022. World Health Organization. Regional Office for Europe. Available at: https://apps.who.int/iris/handle/10665/353747. Accessed: 07.03.2023.
  2. Val-Laillet D, Aarts E, Weber B, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage: Clinical. 2015;8:1-31. doi: 10.1016/j.nicl.2015.03.016
  3. Олейник О.А., Кудлай Д.А., Самойлова Ю.Г., и др. Применение технологий нейровизуализации головного мозга при ожирении в детском возрасте. Педиатрия. Журнал имени Г.Н. Сперанского. 2021;100(6):91-6 [Olejnik O, Kudlaj D, Samojlova Iu, et al. Application of brain neuroimaging technologies for child hood obesity. Pediatria n.a. GN Speransky. 2021;100(6):91-6 (in Russian)]. doi: 10.24110/0031-403X-2021-100-6-91-96
  4. Frisoni GB, Altomare D, Thal DR, et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci. 2022;23(1):53-66. doi: 10.1038/s41583-021-00533-w
  5. Harnischfeger F, Dando R. Obesity-induced taste dysfunction, and its implications for dietary intake. Int J Obes. 2021;45(8):1644-55. doi: 10.1038/s41366-021-00855-w
  6. Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. B J Radiol. 2018;20170910. doi: 10.1259/bjr.20170910
  7. Morales I, Berridge KC. ‘Liking’ and ‘wanting’ in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav. 2020;227:113152. doi: 10.1016/j.physbeh.2020.113152
  8. Kung PH, Soriano-Mas C, Steward T. The influence of the subcortex and brain stem on overeating: How advances in functional neuroimaging can be applied to expand neurobiological models to beyond the cortex. Rev Endocr Metab Disord. 2022;23(4):719-31. doi: 10.1007/s11154-022-09720-1
  9. Drelich-Zbroja A, Matuszek M, Kaczor M, Kuczyńska M. Functional Magnetic Resonance Imaging and Obesity – Novel Ways to Seen the Unseen. J Clin Med. 2022;11(12):3561. doi: 10.3390/jcm11123561
  10. Sager G, Akgun E, Abuqbeitah M, et al. Comparison of brain F-18 FDG PET/MRI with PET/CT imaging in pediatric patients. Clin Neurol Neurosurg. 2021;206:106669. doi: 10.1016/j.clineuro.2021.106669
  11. Neseliler S, Han JE, Dagher A. The Use of Functional Magnetic Resonance Imaging in the Study of Appetite and Obesity. In: Appetite and Food Intake. Second edition. Boca Raton: CRC Press, 2017. Previous edition: CRC Press; 2017; p. 117-34. doi: 10.1201/9781315120171-6
  12. Yoshikawa A, Masaoka Y, Yoshida M, et al. Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging. Front Neurosci. 2020;14. doi: 10.3389/fnins.2020.00631
  13. Trattnig S, Springer E, Bogner W, et al. Key clinical benefits of neuroimaging at 7 T. NeuroImage. 2018;168:477-89. doi: 10.1016/j.neuroimage.2016.11.031
  14. Torrisi S, Chen G, Glen D, et al. Statistical power comparisons at 3T and 7T with a GO/NOGO task. NeuroImage. 2018;175:100-10. doi: 10.1016/j.neuroimage.2018.03.071
  15. Viessmann O, Polimeni JR. High-resolution fMRI at 7 Tesla: challenges, promises and recent developments for individual-focused fMRI studies. Curr Opin Behav Sci. 2021;40:96-104. doi: 10.1016/j.cobeha.2021.01.011
  16. Veldhuizen MG, Cecchetto C, Fjaeldstad AW, et al. Future Directions for Chemosensory Connectomes: Best Practices and Specific Challenges. Front Syst Neurosci. 2022;16. doi: 10.3389/fnsys.2022.885304
  17. Smeets PA, Dagher A, Hare TA, et al. Good practice in food-related neuroimaging. Am J Clin Nutr. 2019;109(3):491-503. doi: 10.1093/ajcn/nqy344
  18. Veldhuizen MG, Babbs RK, Patel B, et al. Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr Biol. 2017;27(16):2476-85.e6. doi: 10.1016/j.cub.2017.07.018
  19. Althubeati S, Avery A, Tench CR, et al. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev. 2022;136:104603. doi: 10.1016/j.neubiorev.2022.104603
  20. Devoto F, Coricelli C, Paulesu E, Zapparoli L. Neural circuits mediating food cue-reactivity: Toward a new model shaping the interplay of internal and external factors. Front Nutr. 2022;9. doi: 10.3389/fnut.2022.954523
  21. Steward T, Wierenga CE. Foreword to the special issue on the neuroscience of obesity and related disorders. Rev Endocr Metab Disord. 2022;23(4):679-81. doi: 10.1007/s11154-022-09739-4.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».