The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes
- Authors: Grinevich P.G.1, Santini P.M.2,3
-
Affiliations:
- L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences
- La Sapienza University, Romе, Italy
- Istituto Nazionale di Fisica Nucleare
- Issue: Vol 74, No 2 (2019)
- Pages: 27-80
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133552
- DOI: https://doi.org/10.4213/rm9863
- ID: 133552
Cite item
Abstract
About the authors
Petr Georgievich Grinevich
L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences
Email: pgg@landau.ac.ru
Doctor of physico-mathematical sciences, Head Scientist Researcher
Paolo Maria Santini
La Sapienza University, Romе, Italy; Istituto Nazionale di Fisica Nucleare
Email: paolo.santini@romal.infn.it
References
- M. J. Ablowitz, J. Hammack, D. Henderson, C. M. Schober, “Long-time dynamics of the modulational instability of deep water waves”, Phys. D, 152/153 (2001), 416–433
- M. J. Ablowitz, B. M. Herbst, “On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation”, SIAM J. Appl. Math., 50:2 (1990), 339–351
- M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127
- M. J. Ablowitz, J. F. Ladik, “Nonlinear differential-difference equations”, J. Math. Phys., 16:3 (1975), 598–603
- M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105
- M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E (3), 90:3 (2014), 032912
- M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2017), 7–59
- M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946
- M. J. Ablowitz, C. Schober, B. M. Herbst, “Numerical chaos, roundoff errors and homoclinic manifolds”, Phys. Rev. Lett., 71:17 (1993), 2683–2686
- М. Абловиц, Х. Сигур, Солитоны и метод обратной задачи, Мир, М., 1987, 480 с.
- D. S. Agafontsev, V. E. Zakharov, “Integrable turbulence and formation of rogue waves”, Nonlinearity, 28:8 (2015), 2791–2821
- Г. П. Агравал, Нелинейная волоконная оптика, Мир, М., 1996, 324 с.
- N. N. Akhmediev, “Nonlinear physics: Dejà vu in optics”, Nature, 413:6853 (2001), 267–268
- Н. Н. Ахмедиев, В. М. Елеонский, Н. Е. Кулагин, “Генерация периодических пакетов пикосекундных импульсов в оптическом фибере: точные решения”, ЖЭТФ, 89:5 (1985), 1542–1551
- Н. Н. Ахмедиев, В. М. Елеонский, Н. Е. Кулагин, “Точные решения первого порядка нелинейного уравнения Шредингера”, ТМФ, 72:2 (1987), 183–196
- Н. Н. Ахмедиев, В. И. Корнеев, “Модуляционная неустойчивость и периодические решения нелинейного уравнения Шредингера”, ТМФ, 69:2 (1986), 189–194
- A. Ankiewicz, N. Akhmediev, J. M. Soto-Crespo, “Discrete rogue waves of the Ablowitz–Ladik and Hirota equations”, Phys. Rev. E (3), 82:2 (2010), 026602, 7 pp.
- М. В. Бабич, А. И. Бобенко, В. Б. Матвеев, “Решения нелинейных уравнений, интегрируемых методом обратной задачи, в тэта-функциях Якоби и симметрии алгебраических кривых”, Изв. АН СССР. Сер. матем., 49:3 (1985), 511–529
- F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves”, Phys. Rev. Lett., 109:4 (2012), 044102
- E. D. Belokolos, A. I. Bobenko, V. Z. Enolskii, A. R. Its, V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1994, xii+337 pp.
- T. B. Benjamin, J. E. Feir, “The disintegration of wave trains on deep water. Part I. Theory”, J. Fluid Mech., 27:3 (1967), 417–430
- M. Bertola, G. A. El, A. Tovbis, “Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 472:2194 (2016), 20160340, 12 pp.
- M. Bertola, A. Tovbis, “Universality for the focusing nonlinear Schrödinger equation at the gradient catastrophe point: rational breathers and poles of the tritronquee solution to Painleve I”, Comm. Pure Appl. Math., 66:5 (2013), 678–752
- В. И. Беспалов, В. И. Таланов, “О нитевидной структуре пучков света в нелинейных жидкостях”, Письма в ЖЭТФ, 3:12 (1966), 471–476
- G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp.
- G. Biondini, S. Li, D. Mantzavinos, “Oscillation structure of localized perturbations in modulationally unstable media”, Phys. Rev. E, 94:6 (2016), 060201(R)
- Yu. V. Bludov, V. V. Konotop, N. Akhmediev, “Matter rogue waves”, Phys. Rev. A, 80:3 (2009), 033610
- U. Bortolozzo, A. Montina, F. T. Arecchi, J. P. Huignard, S. Residori, “Spatiotemporal pulses in a liquid crystal optical oscillator”, Phys. Rev. Lett., 99:2 (2007), 023901
- A. Calini, N. M. Ercolani, D. W. McLaughlin, C. M. Schober, “Mel'nikov analysis of numerically induced chaos in the nonlinear Schrödinger equation”, Phys. D, 89:3-4 (1996), 227–260
- A. Calini, C. M. Schober, “Homoclinic chaos increases the likelihood of rogue wave formation”, Phys. Lett. A, 298:5-6 (2002), 335–349
- A. Calini, C. M. Schober, “Dynamical criteria for rogue waves in nonlinear Schrödinger models”, Nonlinearity, 25:12 (2012), R99–R116
- A. Chabchoub, N. P. Hoffmann, N. Akhmediev, “Rogue wave observation in a water wave tank”, Phys. Rev. Lett., 106:20 (2011), 204502
- И. В. Чередник, “Об условиях вещественности в конечнозонном интегрировании”, Докл. АН СССР, 252:5 (1980), 1104–1108
- F. Coppini, P. M. Santini, The periodic Cauchy problem of anomalous waves for the Ablowitz–Ladik model, and the exact recurrence of rogue waves, preprint, 2018
- A. Degasperis, S. Lombardo, “Integrability in action: solitons, instability and rogue waves”, Rogue and shock waves in nonlinear dispersive waves, Lecture Notes in Phys., 926, Springer, Cham, 2016, 23–53
- A. Degasperis, S. Lombardo, M. Sommacal, “Integrability and linear stability of nonlinear waves”, J. Nonlinear Sci., 28:4 (2018), 1251–1291
- П. Джаков, Б. С. Митягин, “Зоны неустойчивости одномерных периодических операторов Шрeдингера и Дирака”, УМН, 61:4(370) (2006), 77–182
- P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, “On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation”, Eur. Phys. J. Spec. Top., 185:1 (2010), 247–258
- Б. А. Дубровин, “Обратная задача теории рассеяния для периодических конечнозонных потенциалов”, Функц. анализ и его прил., 9:1 (1975), 65–66
- Б. А. Дубровин, “Тэта-функции и нелинейные уравнения”, УМН, 36:2(218) (1981), 11–80
- K. B. Dysthe, K. Trulsen, “Note on breather type solutions of the NLS as models for freak-waves”, Phys. Scripta, T82:1 (1999), 48–52
- G. A. El, E. G. Khamis, A. Tovbis, “Dam break problem for the focusing nonlinear Schrödinger equation and the generation of rogue waves”, Nonlinearity, 29:9 (2016), 2798–2836
- N. Ercolani, M. G. Forest, D. W. McLaughlin, “Geometry of the modulational instability. III. Homoclinic orbits for the periodic sine-Gordon equation”, Phys. D, 43:2-3 (1990), 349–384
- Л. А. Тахтаджян, Л. Д. Фаддеев, Гамильтонов подход в теории солитонов, Наука, М., 1986, 528 с.
- J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Math., 352, Springer-Verlag, Berlin–New York, 1973, iv+137 pp.
- M. G. Forest, J. E. Lee, “Geometry and modulation theory for the periodic nonlinear Schrödinger equation”, Oscillation theory, computation, and methods of compensated compactness (Minneapolis, MN, 1985), IMA Vol. Math. Appl., 2, Springer, New York, 1986, 35–69
- G. Gallavotti (ed.), The Fermi–Pasta–Ulam problem. A status report, Lecture Notes in Phys., 728, Springer, Berlin, 2008, viii+301 pp.
- A. A. Gelash, “Formation of rogue waves from a locally perturbed condensate”, Phys. Rev. E, 97 (2018), 022208
- A. A. Gelash, D. S. Agafontsev, “Strongly interacting soliton gas and formation of rogue waves”, Phys. Rev. E, 98 (2018), 042210
- A. A. Gelash, V. E. Zakharov, “Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability”, Nonlinearity, 27:4 (2014), R1–R39
- R. H. J. Grimshaw, A. Tovbis, “Rogue waves: analytical predictions”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 469:2157 (2013), 20130094, 10 pp.
- P. G. Grinevich, P. M. Santini, “The finite gap method and the analytic description of the exact rogue wave recurrence in the periodic NLS Cauchy problem. 1”, Nonlinearity, 31:11 (2018), 5258–5308
- P. G. Grinevich, P. M. Santini, “The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes”, Phys. Lett. A, 382:14 (2018), 973–979
- П. Г. Гриневич, П. М. Сантини, “Фазовые резонансы для повторяемости аномальных волн НУШ в квазисимметричном случае”, ТМФ, 196:3 (2018), 404–418
- P. G. Grinevich, P. M. Santini, “Numerical instability of the Akhmediev breather and a finite-gap model of it”, Recent developments in integrable systems and related topics of mathematical physics (Kezenoi-Am, Russia, 2016), Springer Proc. Math. Stat., 273, Springer, Berlin, 2018, 3–23
- P. G. Grinevich, M. U. Schmidt, “Period preserving nonisospectral flows and the moduli space of periodic solutions of soliton equations”, Phys. D, 87:1-4 (1995), 73–98
- K. L. Henderson, D. H. Peregrine, J. W. Dold, “Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation”, Wave Motion, 29:4 (1999), 341–361
- R. Hirota, “Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27:18 (1971), 1192–1994
- R. Hirota, “Direct method of finding exact solutions of nonlinear evolution equations”, Bäcklund transformations, the inverse scattering method, solitons, and their applications (Workshop Contact Transformations, Vanderbilt Univ., Nashville, TN, 1974), Lecture Notes in Math., 515, Springer, Berlin, 1976, 40–68
- H. Hochstadt, “Estimates on the stability intervals for Hill's equation”, Proc. Amer. Math. Soc., 14:6 (1963), 930–932
- А. Р. Итс, В. П. Котляров, “Явные формулы для решения нелинейного уравнения Шредингера”, Докл. АН УССР Сер. А, 1976, № 11, 965–968
- А. Р. Итс, В. Б. Матвеев, “Об операторах Хилла с конечным числом лакун”, Функц. анализ и его прил., 9:1 (1975), 69–70
- А. Р. Итс, А. В. Рыбин, М. А. Салль, “К вопросу о точном интегрировании нелинейного уравнения Шредингера”, ТМФ, 74:1 (1988), 29–45
- J. Javanainen, J. Ruostekoski, “Symbolic calculation in development of algorithms: split-step methods for the Gross–Pitaevskii equation”, J. Phys. A, 39:12 (2006), L179–L184
- T. Kawata, H. Inoue, “Inverse scattering method for the nonlinear evolution equations under nonvanishing conditions”, J. Phys. Soc. Japan, 44:5 (1978), 1722–1729
- D. J. Kedziora, A. Ankiewicz, N. Akhmediev, “Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits”, Phys. Rew. E, 85:6 (2012), 066601
- C. Kharif, E. Pelinovsky, T. Talipova, A. Slunyaev, “Focusing of nonlinear wave groups in deep water”, Письма в ЖЭТФ, 73:4 (2001), 190–195
- C. Kharif, E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon”, Eur. J. Mech. B/Fluids, 22:6 (2003), 603–634
- B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J. M. Dudley, “The Peregrine soliton in nonlinear fibre optics”, Nature Physics, 6:10 (2010), 790–795
- O. Kimmoun, H. C. Hsu, H. Branger, M. S. Li, Y. Y. Chen, C. Kharif, M. Onorato, E. J. R. Kelleher, B. Kibler, N. Akhmediev, A. Chabchoub, “Modulation instability and phase-shifted Fermi–Pasta–Ulam recurrence”, Sci. Rep., 6 (2016), 28516, 9 pp.
- W. Kohn, “Analytic properties of Bloch waves and Wannier functions”, Phys. Rev. (2), 115:4 (1959), 809–821
- И. М. Кричевер, “Методы алгебраической геометрии в теории нелинейных уравнений”, УМН, 32:6(198) (1977), 183–208
- И. М. Кричевер, “Спектральная теория двумерных периодических операторов и ее приложения”, УМН, 44:2(266) (1989), 121–184
- I. M. Krichever, “Perturbation theory in periodic problems for two-dimensional integrable systems”, Sov. Sci. Rev., Sect. C, Math. Phys. Rev., 9:2 (1992), 1–103
- Е. А. Кузнецов, “О солитонах в параметрически неустойчивой плазме”, Докл. АН СССР, 236:3 (1977), 575–577
- E. A. Kuznetsov, “Fermi–Pasta–Ulam recurrence and modulation instability”, Письма в ЖЭТФ, 105:2 (2017), 108–109
- B. M. Lake, H. C. Yuen, H. Rungaldier, W. E. Ferguson, “Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train”, J. Fluid Mech., 83:1 (1977), 49–74
- P. D. Lax, “Periodic solutions of the KdV equations”, Nonlinear wave motion (Clarkson Coll. Tech., Potsdam, NY, 1972), Lectures in Appl. Math., 15, Amer. Math. Soc., Providence, RI., 1974, 85–96
- Y. C. Ma, “The perturbed plane-wave solutions of the cubic Schrödinger equation”, Stud. Appl. Math., 60:1 (1979), 43–58
- В. А. Марченко, И. В. Островский, “Характеристика спектра оператора Хилла”, Матем. сб., 97(139):4(8) (1975), 540–606
- V. B. Matveev, M. A. Salle, Darboux transformations and solitons, Springer Ser. Nonlinear Dynam., Springer-Verlag, Berlin, 1991, x+120 pp.
- H. P. McKean, P. van Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274
- Д. Мамфорд, Лекции о тета-функциях, Мир, М., 1988, 448 с.
- A. Mussot, C. Naveau, M. Conforti, A. Kudlinski, F. Copie, P. Szriftgiser, S. Trillo, “Fibre multiwave-mixing combs reveal the broken symmetry of Fermi–Pasta–Ulam recurrence”, Nature Photonics, 12:5 (2018), 303–308
- K. Narita, “Soliton solutions for discrete Hirota equation. II”, J. Phys. Soc. Japan, 60:5 (1991), 1497–1500
- С. П. Новиков, “Периодическая задача для уравнения Кортевега–де Фриза. I”, Функц. анализ и его прил., 8:3 (1974), 54–66
- M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep., 528:2 (2013), 47–89
- A. R. Osborne, M. Onorato, M. Serio, “The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains”, Phys. Lett. A, 275:5-6 (2000), 386–393
- D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43
- D. Pierangeli, F. Di Mei, C. Conti, A. J. Agranat, E. DelRe, “Spatial rogue waves in photorefractive ferroelectrics”, Phys. Rev. Lett., 115:9 (2015), 093901
- D. Pierangeli, M. Flammini, L. Zhang, G. Marcucci, A. J. Agranat, P. G. Grinevich, P. M. Santini, C. Conti, E. DelRe, “Observation of Fermi–Pasta–Ulam–Tsingou recurrence and its exact dynamics”, Phys. Rev. X, 8:4 (2018), 041017, 9 pp.
- L. Pitaevskii, S. Stringari, Bose–Einstein condensation, Internat. Ser. Monogr. Phys., 116, The Clarendon Press, Oxford Univ. Press, Oxford, 2003, x+382 pp.
- E. Previato, “Hyperelliptic quasi-periodic and soliton solutions of the nonlinear Schrödinger equation”, Duke Math. J., 52:2 (1985), 329–377
- L. Salasnich, A. Parola, L. Reatto, “Modulational instability and complex dynamics of confined matter-wave solitons”, Phys. Rev. Lett., 91:8 (2003), 080405
- P. M. Santini, “The periodic Cauchy problem for PT-symmetric NLS. I: The first appearance of rogue waves, regular behavior or blow up at finite times”, J. Phys. A, 51:49 (2018), 495207, 21 pp.
- P. M. Santini, Darboux-dressing and symmetry construction of classes of regular and singular solutions of the NLS and the PT-symmetric NLS equations over the constant background, preprint, 2018
- А. О. Смирнов, “Решение нелинейного уравнения Шредингера в виде двухфазных странных волн”, ТМФ, 173:1 (2012), 89–103
- D. R. Solli, C. Ropers, P. Koonath, B. Jalali, “Optical rogue waves”, Nature, 450:7172 (2007), 1054–1057
- Дж. Спрингер, Введение в теорию римановых поверхностей, ИЛ, М., 1960, 343 с.
- G. G. Stokes, “On the theory of oscillatory waves”, Trans. Cambridge Philos. Soc., 8 (1847), 441–455
- C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999, xvi+350 pp.
- T. R. Taha, X. Xu, “Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations”, J. Supercomput., 32:1 (2005), 5–23
- T. Taniuti, H. Washimi, “Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma”, Phys. Rev. Lett., 21:4 (1968), 209–212
- A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, S. Randoux, G. Genty, P. Suret, J. M. Dudley, “Universality of the Peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation”, Phys. Rev. Lett., 119:3 (2017), 033901
- E. R. Tracy, H. H. Chen, “Nonlinear self-modulation: an exactly solvable model”, Phys. Rev. A (3), 37:3 (1988), 815–839
- M. P. Tulin, T. Waseda, “Laboratory observation of wave group evolution, including breaking effects”, J. Fluid Mech., 378:1 (1999), 197–232
- G. Van Simaeys, P. Emplit, M. Haelterman, “Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave”, Phys. Rev. Lett., 87:3 (2001), 033902
- J. A. C. Weideman, B. M. Herbst, “Split-step methods for the solution of the nonlinear Schrödinger equation”, SIAM J. Numer. Anal., 23:3 (1986), 485–507
- H. C. Yuen, W. E. Ferguson, Jr., “Relationship between Benjamin–Feir instability and recurrence in the nonlinear Schrödinger equation”, Phys. Fluids, 21 (1978), 1275–1278
- H. C. Yuen, B. M. Lake, “Nonlinear dynamics of deep-water gravity waves”, Adv. in Appl. Mech., 22 (1982), 67–229
- В. Е. Захаров, “Устойчивость периодических волн конечной амплитуды на поверхности глубокой жидкости”, ПМТФ, 9:2 (1968), 86–94
- V. E. Zakharov, A. A. Gelash, Soliton on unstable condensate, 2011, 4 pp.
- V. E. Zakharov, A. A. Gelash, “Nonlinear stage of modulation instability”, Phys. Rev. Lett., 111:5 (2013), 054101
- В. Е. Захаров, С. В. Манаков, “Построение многомерных нелинейных интегрируемых систем и их решений”, Функц. анализ и его прил., 19:2 (1985), 11–25
- В. Е. Захаров, А. В. Михайлов, “Релятивистски-инвариантные двумерные модели теории поля, интегрируемые методом обратной задачи”, ЖЭТФ, 74:6 (1978), 1953–1973
- V. E. Zakharov, L. A. Ostrovsky, “Modulation instability: the beginning”, Phys. D, 238:5 (2009), 540–548
- В. Е. Захаров, А. Б. Шабат, “Точная теория двумерной самофокусировки и одномерной автомодуляции волн в нелинейных средах”, ЖЭТФ, 61:1 (1972), 118–134
- В. Е. Захаров, А. Б. Шабат, “Схема интегрирования нелинейных уравнений математической физики методом обратной задачи рассеяния. I”, Функц. анализ и его прил., 8:3 (1974), 43–53
Supplementary files
