Real-normalized differentials: limits on stable curves

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We study the behaviour of real-normalized (RN) meromorphic differentials on Riemann surfaces under degeneration. We describe all possible limits of RN differentials on any stable curve. In particular we prove that the residues at the nodes are solutions of a suitable Kirchhoff problem on the dual graph of the curve. We further show that the limits of zeros of RN differentials are the divisor of zeros of a twisted differential — an explicitly constructed collection of RN differentials on the irreducible components of the stable curve, with higher order poles at some nodes. Our main tool is a new method for constructing differentials (in this paper, RN differentials, but the method is more general) on smooth Riemann surfaces, in a plumbing neighbourhood of a given stable curve. To accomplish this, we think of a smooth Riemann surface as the complement of a neighbourhood of the nodes in a stable curve, with boundary circles identified pairwise. Constructing a differential on a smooth surface with prescribed singularities is then reduced to a construction of a suitable normalized holomorphic differential with prescribed ‘jumps’ (mismatches) along the identified circles (seams). We solve this additive analogue of the multiplicative Riemann–Hilbert problem in a new way, by using iteratively the Cauchy integration kernels on the irreducible components of the stable curve, instead of using the Cauchy kernel on the plumbed smooth surface. As the stable curve is fixed, this provides explicit estimates for the differential constructed, and allows a precise degeneration analysis.Bibliography: 22 titles.

Sobre autores

Samuel Grushevsky

Stony Brook University

Email: sam@math.stonybrook.edu

Igor Krichever

Columbia University; Skolkovo Institute of Science and Technology; HSE University; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences

Email: krichev@math.columbia.edu
Doctor of physico-mathematical sciences, Professor

Chaya Norton

Concordia University; Université de Montréal, Centre de Recherches Mathématiques

Email: nortonch@crm.umontreal.ca

Bibliografia

  1. E. Arbarello, M. Cornalba, P. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp.
  2. M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Moeller, “Compactification of strata of Abelian differentials”, Duke Math. J., 167:12 (2018), 2347–2416
  3. L. Bers, “Spaces of degenerating Riemann surfaces”, Discontinuous groups and Riemann surfaces (Univ. Maryland, College Park, MD, 1973), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974, 43–55
  4. D. Chen, “Degenerations of abelian differentials”, J. Differential Geom., 107:3 (2017), 395–453
  5. G. Farkas, R. Pandharipande, “The moduli space of twisted canonical differentials”, J. Inst. Math. Jussieu, 17:3 (2018), 615–672
  6. Q. Gendron, “The Deligne–Mumford and the incidence variety compactifications of the strata of $Omegamathcal{M}_g$”, Ann. Inst. Fourier (Grenoble), 68:3 (2018), 1169–1240
  7. W. D. Gillam, Oriented real blowup, preprint, 21 pp., par
  8. S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Surveys in differential geometry, v. XIV, Surv. Differ. Geom., 14, Geometry of Riemann surfaces and their moduli spaces, Int. Press, Somerville, MA, 2009, 111–129
  9. S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics. The Abel symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 123–137
  10. S. Grushevsky, I. Krichever, Real-normalized differentials and cusps of plane curves, in preparation
  11. X. Hu, C. Norton, “General variational formulas for Abelian differentials”, Int. Math. Res. Notices, 2018, rny106, Publ. online
  12. И. М. Кричевер, “Спектральная теория ‘конечнозонных’ нестационарных операторов Шрeдингера. Нестационарная модель Пайерлса”, Функц. анализ и его прил., 20:3 (1986), 42–54
  13. И. М. Кричевер, “Метод усреднения для двумерных ‘интегрируемых’ уравнений”, Функц. анализ и его прил., 22:3 (1988), 37–52
  14. И. М. Кричевер, “Вещественно-нормированные дифференциалы и гипотеза Арбарелло”, Функц. анализ и его прил., 46:2 (2012), 37–51
  15. И. М. Кричевер, С. П. Новиков, “Алгебры типа Вирасоро, римановы поверхности и струны в пространстве Минковского”, Функц. анализ и его прил., 21:4 (1987), 47–61
  16. L. Lang, Harmonic tropical curves, 2015, 46 pp.
  17. C. R. Norton, Limits of real-normalized differentials on stable curves, Ph.D. Thesis, Stony Brook Univ., 2014, 115 pp.
  18. B. Osserman, “Limit linear series for curves not of compact type”, J. Reine Angew. Math., 2017, Publ. online
  19. Yu. L. Rodin, The Riemann boundary problem on Riemann surfaces, Math. Appl. (Soviet Ser.), 16, D. Reidel Publishing Co., Dordrecht, 1988, xiv+199 pp.
  20. М. Шиффер, Д. К. Спенсер, Функционалы на конечных римановых поверхностях, ИЛ, М., 1957, 347 с.
  21. S. A. Wolpert, “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440
  22. Э. И. Зверович, “Краевые задачи теории аналитических функций в гeльдеровских классах на римановых поверхностях”, УМН, 26:1(157) (1971), 113–179

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Grushevsky S., Krichever I.M., Norton C., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».