Real-normalized differentials: limits on stable curves
- Autores: Grushevsky S.1, Krichever I.M.2,3,4,5,6, Norton C.7,8
-
Afiliações:
- Stony Brook University
- Columbia University
- Skolkovo Institute of Science and Technology
- HSE University
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute)
- L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences
- Concordia University
- Université de Montréal, Centre de Recherches Mathématiques
- Edição: Volume 74, Nº 2 (2019)
- Páginas: 81-148
- Seção: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133554
- DOI: https://doi.org/10.4213/rm9877
- ID: 133554
Citar
Resumo
Palavras-chave
Sobre autores
Samuel Grushevsky
Stony Brook University
Email: sam@math.stonybrook.edu
Igor Krichever
Columbia University; Skolkovo Institute of Science and Technology; HSE University; Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute); L.D. Landau Institute for Theoretical Physics of Russian Academy of Sciences
Email: krichev@math.columbia.edu
Doctor of physico-mathematical sciences, Professor
Chaya Norton
Concordia University; Université de Montréal, Centre de Recherches Mathématiques
Email: nortonch@crm.umontreal.ca
Bibliografia
- E. Arbarello, M. Cornalba, P. A. Griffiths, Geometry of algebraic curves, With a contribution by J. D. Harris, v. II, Grundlehren Math. Wiss., 268, Springer, Heidelberg, 2011, xxx+963 pp.
- M. Bainbridge, D. Chen, Q. Gendron, S. Grushevsky, M. Moeller, “Compactification of strata of Abelian differentials”, Duke Math. J., 167:12 (2018), 2347–2416
- L. Bers, “Spaces of degenerating Riemann surfaces”, Discontinuous groups and Riemann surfaces (Univ. Maryland, College Park, MD, 1973), Ann. of Math. Stud., 79, Princeton Univ. Press, Princeton, NJ, 1974, 43–55
- D. Chen, “Degenerations of abelian differentials”, J. Differential Geom., 107:3 (2017), 395–453
- G. Farkas, R. Pandharipande, “The moduli space of twisted canonical differentials”, J. Inst. Math. Jussieu, 17:3 (2018), 615–672
- Q. Gendron, “The Deligne–Mumford and the incidence variety compactifications of the strata of $Omegamathcal{M}_g$”, Ann. Inst. Fourier (Grenoble), 68:3 (2018), 1169–1240
- W. D. Gillam, Oriented real blowup, preprint, 21 pp., par
- S. Grushevsky, I. Krichever, “The universal Whitham hierarchy and the geometry of the moduli space of pointed Riemann surfaces”, Surveys in differential geometry, v. XIV, Surv. Differ. Geom., 14, Geometry of Riemann surfaces and their moduli spaces, Int. Press, Somerville, MA, 2009, 111–129
- S. Grushevsky, I. Krichever, “Real-normalized differentials and the elliptic Calogero–Moser system”, Complex geometry and dynamics. The Abel symposium 2013, Abel Symp., 10, Springer, Cham, 2015, 123–137
- S. Grushevsky, I. Krichever, Real-normalized differentials and cusps of plane curves, in preparation
- X. Hu, C. Norton, “General variational formulas for Abelian differentials”, Int. Math. Res. Notices, 2018, rny106, Publ. online
- И. М. Кричевер, “Спектральная теория ‘конечнозонных’ нестационарных операторов Шрeдингера. Нестационарная модель Пайерлса”, Функц. анализ и его прил., 20:3 (1986), 42–54
- И. М. Кричевер, “Метод усреднения для двумерных ‘интегрируемых’ уравнений”, Функц. анализ и его прил., 22:3 (1988), 37–52
- И. М. Кричевер, “Вещественно-нормированные дифференциалы и гипотеза Арбарелло”, Функц. анализ и его прил., 46:2 (2012), 37–51
- И. М. Кричевер, С. П. Новиков, “Алгебры типа Вирасоро, римановы поверхности и струны в пространстве Минковского”, Функц. анализ и его прил., 21:4 (1987), 47–61
- L. Lang, Harmonic tropical curves, 2015, 46 pp.
- C. R. Norton, Limits of real-normalized differentials on stable curves, Ph.D. Thesis, Stony Brook Univ., 2014, 115 pp.
- B. Osserman, “Limit linear series for curves not of compact type”, J. Reine Angew. Math., 2017, Publ. online
- Yu. L. Rodin, The Riemann boundary problem on Riemann surfaces, Math. Appl. (Soviet Ser.), 16, D. Reidel Publishing Co., Dordrecht, 1988, xiv+199 pp.
- М. Шиффер, Д. К. Спенсер, Функционалы на конечных римановых поверхностях, ИЛ, М., 1957, 347 с.
- S. A. Wolpert, “Infinitesimal deformations of nodal stable curves”, Adv. Math., 244 (2013), 413–440
- Э. И. Зверович, “Краевые задачи теории аналитических функций в гeльдеровских классах на римановых поверхностях”, УМН, 26:1(157) (1971), 113–179
Arquivos suplementares
