Krotov method for optimal control of closed quantum systems
- Authors: Morzhin O.V.1, Pechen A.N.1,2
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- National University of Science and Technology «MISIS»
- Issue: Vol 74, No 5 (2019)
- Pages: 83-144
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133571
- DOI: https://doi.org/10.4213/rm9835
- ID: 133571
Cite item
Abstract
About the authors
Oleg Vasilevich Morzhin
Steklov Mathematical Institute of Russian Academy of Sciences
Email: morzhin.oleg@yandex.ru
Candidate of physico-mathematical sciences, no status
Alexander Nikolaevich Pechen
Steklov Mathematical Institute of Russian Academy of Sciences; National University of Science and Technology «MISIS»
Email: apechen@gmail.com
Doctor of physico-mathematical sciences, no status
References
- Л. С. Понтрягин, В. Г. Болтянский, Р. В. Гамкрелидзе, Е. Ф. Мищенко, Математическая теория оптимальных процессов, Физматгиз, М., 1961, 391 с.
- Р. Беллман, Динамическое программирование, ИЛ, М., 1960, 400 с.
- А. Г. Бутковский, Ю. И. Самойленко, Управление квантовомеханическими процессами, Наука, М., 1984, 256 с.
- И. В. Краснов, Н. Я. Шапарев, И. М. Шкедов, Оптимальные лазерные воздействия, Наука, Новосибирск, 1989, 93 с.
- S. A. Rice, M. Zhao, Optical control of molecular dynamics, John Wiley & Sons, Inc., New York, 2000, xvi+438 pp.
- A. D. Bandrauk, M. C. Delfour, C. Le Bris (eds.), Quantum control: mathematical and numerical challenges (Montreal, QC, 2002), CRM Proc. Lecture Notes, 33, Amer. Math. Soc., Providence, RI, 2003, xii+211 pp.
- D. D'Alessandro, “Directions in the theory of quantum control”, Multidisciplinary research in control (Santa Barbara, CA, 2002), Lect. Notes Control Inf. Sci., 289, Springer, Berlin, 2003, 73–80
- M. Shapiro, P. Brumer, Principles of the quantum control of molecular processes, John Wiley & Sons, Inc., Hoboken, NJ, 2003, xiv+354 pp.
- D. J. Tannor, Introduction to quantum mechanics: a time-dependent perspective, Univ. Science Books, Sausilito, CA, 2007, 662 pp.
- V. S. Letokhov, Laser control of atoms and molecules, Oxford Univ. Press, Oxford, 2007, 328 pp.
- D. D'Alessandro, Introduction to quantum control and dynamics, Chapman & Hall/CRC Appl. Math. Nonlinear Sci. Ser., Chapman & Hall/CRC, Boca Raton, FL, 2008, xiv+343 pp.
- A. L. Fradkov, Cybernetical physics. From control of chaos to quantum control, Underst. Complex Syst., Springer, Berlin, 2007, xii+241 pp.
- C. Brif, R. Chakrabarti, H. Rabitz, “Control of quantum phenomena: past, present and future”, New J. Phys., 12:7 (2010), 075008, 68 pp.
- D. Y. Dong, I. R. Petersen, “Quantum control theory and applications: a survey”, IET Control Theory Appl., 4:12 (2010), 2651–2671
- H. M. Wiseman, G. J. Milburn, Quantum measurement and control, Cambridge Univ. Press, Cambridge, 2010, xvi+460 pp.
- C. Altafini, F. Ticozzi, “Modeling and control of quantum systems: an introduction”, IEEE Trans. Automat. Control, 57:8 (2012), 1898–1917
- B. Bonnard, D. Sugny, Optimal control with applications in space and quantum dynamics, AIMS Ser. Appl. Math., 5, Am. Inst. Math. Sci. (AIMS), Springfield, MO, 2012, xvi+283 pp.
- J. E. Gough, “Introduction: Principles and applications of quantum control engineering”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 370:1979 (2012), 5241–5258
- S. Cong, Control of quantum systems. Theory and methods, John Wiley & Sons, Hoboken, NJ, 2014, xvii+425 pp.
- W. Dong, R. Wu, X. Yuan, C. Li, T.-J. Tarn, “The modelling of quantum control systems”, Sci. Bull., 60:17 (2015), 1493–1508
- S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm, “Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe”, Eur. Phys. J. D, 69:12 (2015), 279, 24 pp.
- C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations”, J. Phys. Condens. Matter, 28:21 (2016), 213001, 13 pp.
- A. Borzì, G. Ciaramella, M. Sprengel, Formulation and numerical solution of quantum control problems, Comput. Sci. Eng., 16, SIAM, Philadelphia, PA, 2017, x+390 pp.
- В. П. Белавкин, “К теории управления квантовыми наблюдаемыми системами”, Автомат. и телемех., 1983, № 2, 50–63
- H. M. Wiseman, G. J. Milburn, “Quantum theory of optical feedback via homodyne detection”, Phys. Rev. Lett., 70:5 (1993), 548–551
- R. S. Judson, H. Rabitz, “Teaching lasers to control molecules”, Phys. Rev. Lett., 68:10 (1992), 1500–1503
- A. Pechen, H. Rabitz, “Teaching the environment to control quantum systems”, Phys. Rev. A, 73:6 (2006), 062102, 6 pp.
- O. V. Morzhin, A. N. Pechen, “Maximization of the overlap between density matrices for a two-level open quantum system driven by coherent and incoherent controls”, Lobachevskii J. Math., 40:10 (2019) (in print)
- U. Boscain, G. Charlot, J.-P. Gauthier, S. Guerin, H.-R. Jauslin, “Optimal control in laser-induced population transfer for two- and three-level quantum systems”, J. Math. Phys., 43:5 (2002), 2107–2132
- U. Boscain, T. Chambrion, G. Charlot, “Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimal energy”, Discrete Contin. Dyn. Syst. Ser. B, 5:4 (2005), 957–990
- U. Boscain, P. Mason, “Time minimal trajectories for a spin 1/2 particle in a magnetic field”, J. Math. Phys., 47:6 (2006), 062101, 29 pp.
- A. Carlini, A. Hosoya, T. Koike, Y. Okudaira, “Time optimal quantum evolution”, Phys. Rev. Lett., 96:6 (2006), 060503
- P. Salamon, K. H. Hoffmann, A. Tsirlin, “Optimal control in a quantum cooling problem”, Appl. Math. Lett., 25:10 (2012), 1263–1266
- E. Assemat, M. Lapert, D. Sugny, S. J. Glaser, “On the application of geometric optimal control theory to nuclear magnetic resonance”, Math. Control Relat. Fields, 3:4 (2013), 375–396
- U. Boscain, F. Grönberg, R. Long, H. Rabitz, “Minimal time trajectories for two-level quantum systems with two bounded controls”, J. Math. Phys., 55:6 (2014), 062106, 25 pp.
- R. Romano, “Geometric analysis of minimum time trajectories for a two level quantum system”, Phys. Rev. A, 90:6 (2014), 062302
- F. Albertini, D. D'Alessandro, “Time optimal simultaneous control of two level quantum systems”, Automatica, 74 (2016), 55–62
- T. Schulte-Herbrüggen, S. J. Glaser, G. Dirr, U. Helmke, “Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications”, Rev. Math. Phys., 22:6 (2010), 597–667
- N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms”, J. Magn. Reson., 172:2 (2005), 296–305
- G. Jäger, D. M. Reich, M. H. Goerz, C. P. Koch, U. Hohenester, “Optimal quantum control of Bose–Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes”, Phys. Rev. A, 90:3 (2014), 033628, 9 pp.
- T. Caneva, T. Calarco, S. Montangero, “Chopped random-basis quantum optimization”, Phys. Rev. A, 84:2 (2011), 022326
- W. Zhu, H. Rabitz, “A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator”, J. Chem. Phys., 109:2 (1998), 385–391
- Y. Maday, G. Turinici, “New formulations of monotonically convergent quantum control algorithms”, J. Chem. Phys., 118:18 (2003), 8191–8196
- J. Gough, V. P. Belavkin, O. G. Smolyanov, “Hamilton–Jacobi–Bellman equations for quantum optimal feedback control”, J. Opt. B Quantum Semiclass. Opt., 7:10 (2005), S237–S244
- A. Pechen, A. Trushechkin, “Measurement-assisted Landau–Zener transitions”, Phys. Rev. A, 91:5 (2015), 052316, 15 pp.
- M. K. Riahi, J. Salomon, S. J. Glaser, D. Sugny, “Fully efficient time-parallelized quantum optimal control algorithm”, Phys. Rev. A, 93:4 (2016), 043410
- М. С. Ананьевский, А. Л. Фрадков, “Управление наблюдаемыми в конечноуровневых квантовых системах”, Автомат. и телемех., 2005, № 5, 63–75
- А. Н. Печень, “О методе скоростного градиента для генерации унитарных квантовых операций в замкнутых квантовых системах”, УМН, 71:3(429) (2016), 205–206
- T.-S. Ho, H. Rabitz, “Accelerated monotonic convergence of optimal control over quantum dynamics”, Phys. Rev. E (3), 82:2 (2010), 026703, 15 pp.
- O. V. Morzhin, A. N. Pechen, “Minimal time generation of density matrices for a two-level quantum system driven by coherent and incoherent controls”, Int. J. Theor. Phys., first online 2019, 9 pp., doi: 10.1007/s10773-019-04149-w
- D. Dong, C. Chen, T.-J. Tarn, A. Pechen, H. Rabitz, “Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning”, IEEE Trans. Systems Man Cybernet. Part B (Cybernet.), 38:4 (2008), 957–962
- M. Y. Niu, S. Boixo, V. Smelyanskiy, H. Neven, Universal quantum control through deep reinforcement learning, 2018, 21 pp.
- J. P. P. Zauleck, R. de Vivie-Riedle, “Constructing grids for molecular quantum dynamics using an autoencoder”, J. Chem. Theory Comput., 14:1 (2018), 55–62
- P. Palittapongarnpim, B. C. Sanders, “Enter the machine”, Nat. Phys., 14:5 (2018), 432–433
- G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, G. Carleo, “Neural-network quantum state tomography”, Nat. Phys., 14:5 (2018), 447–450
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, “Quantum machine learning”, Nature, 549:7671 (2017), 195–202
- В. Ф. Кротов, И. Н. Фельдман, “Итерационные методы решения экстремальных задач”, Моделирование технико-экономических процессов, Изд-во МЭСИ, М., 1978, 22–35
- В. Ф. Кротов, И. Н. Фельдман, “Итерационный метод решения задач оптимального управления”, Изв. АН СССР. Техн. киберн., 1983, № 2, 160–168
- В. Ф. Кротов, В. И. Гурман, Методы и задачи оптимального управления, Наука, М., 1973, 446 с.
- V. F. Krotov, Global methods in optimal control theory, Monogr. Textbooks Pure Appl. Math., 195, Marcel Dekker, Inc., New York, 1996, xvi+384 pp.
- А. И. Коннов, В. Ф. Кротов, “О глобальных методах последовательного улучшения управляемых процессов”, Автомат. и телемех., 1999, № 10, 77–88
- В. А. Казаков, В. Ф. Кротов, “Оптимальное управление резонансным взаимодействием света с веществом”, Автомат. и телемех., 1987, № 4, 9–15
- V. F. Krotov, “Global methods to improve control and optimal control of resonance interaction of light and matter”, Modeling and control of systems in engineering, quantum mechanics, economics and biosciences (Sophia-Antipolis, 1988), Lect. Notes Control Inf. Sci., 121, Springer, Berlin, 1989, 267–298
- D. J. Tannor, V. Kazakov, V. Orlov, “Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds”, Time-dependent quantum molecular dynamics, Nato ASI Ser. Ser. B, 299, Springer, Boston, MA, 1992, 347–360
- J. Somloi, V. A. Kazakov, D. J. Tannor, “Controlled dissociation of $I_2$ via optical transitions between the X and B electronic states”, Chem. Phys., 172:1 (1993), 85–98
- S. E. Sklarz, D. J. Tannor, “Loading a Bose–Einstein condensate onto an optical lattice: an application of optimal control theory to the nonlinear Schrödinger equation”, Phys. Rev. A, 66:5 (2002), 053619, 9 pp.
- J. P. Palao, R. Kosloff, C. P. Koch, “Protecting coherence in optimal control theory: state-dependent constraint approach”, Phys. Rev. A, 77:6 (2008), 063412, 11 pp.
- T. Szakacs, B. Amstrup, P. Gross, R. Kosloff, H. Rabitz, A. Lörincz, “Locking a molecular bond: a case study of CsI”, Phys. Rev. A, 50:3 (1994), 2540–2547
- I. R. Sola, J. Santamaria, D. J. Tannor, “Optimal control of multiphoton excitation: a black box or a flexible toolkit?”, J. Phys. Chem. A, 102:23 (1998), 4301–4309
- A. Bartana, R. Kosloff, D. J. Tannor, “Laser cooling of molecules by dynamically trapped states”, Chem. Phys., 267:1-3 (2001), 195–207
- C. P. Koch, J. P. Palao, R. Kosloff, F. Masnou-Seeuws, “Stabilization of ultracold molecules using optimal control theory”, Phys. Rev. A, 70:1 (2004), 013402, 14 pp.
- T. Caneva, M. Murphy, T. Calarco, R. Fazio, S. Montangero, V. Giovannetti, G. E. Santoro, “Optimal control at the quantum speed limit”, Phys. Rev. Lett., 103:24 (2009), 240501
- M. Ndong, C. P. Koch, “Vibrational stabilization of ultracold KRb molecules: a comparative study”, Phys. Rev. A, 82:4 (2010), 043437, 10 pp.
- R. Eitan, M. Mundt, D. J. Tannor, “Optimal control with accelerated convergence: combining the Krotov and quasi-Newton methods”, Phys. Rev. A, 83:5 (2011), 053426, 10 pp.
- P. Kumar, S. A. Malinovskaya, V. S. Malinovsky, “Optimal control of population and coherence in three-level $Lambda$ systems”, J. Phys. B, 44:15 (2011), 154010, 10 pp.
- J. P. Palao, D. M. Reich, C. P. Koch, “Steering the optimization pathway in the control landscape using constraints”, Phys. Rev. A, 88:5 (2013), 053409, 8 pp.
- Е. А. Трушкова, “Метод глобального улучшения для гамильтоновых систем с управляемыми коэффициентами”, Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика, 13:1(2) (2013), 95–99
- M. Ndong, C. P. Koch, D. Sugny, “Time optimization and state-dependent constraints in the quantum optimal control of molecular orientation”, J. Modern Opt., 61:10 (2014), 857–863
- M. Goerz, Optimizing robust quantum gates in open quantum systems, Diss. … Dr. rer. Nat., Univ. Kassel, 2015, xvi+221par pp.
- J. P. Palao, R. Kosloff, “Quantum computing by an optimal control algorithm for unitary transformations”, Phys. Rev. Lett., 89:18 (2002), 188301, 13 pp.
- J. P. Palao, R. Kosloff, “Optimal control theory for unitary transformations”, Phys. Rev. A, 68:6 (2003), 062308
- P. Treutlein, T. W. Hänsch, J. Reichel, A. Negretti, M. A. Cirone, T. Calarco, “Microwave potentials and optimal control for robust quantum gates on an atom chip”, Phys. Rev. A, 74:2 (2006), 022312, 13 pp.
- G. de Chiara, T. Calarco, M. Anderlini, S. Montangero, P. J. Lee, B. L. Brown, W. D. Phillips, J. V. Porto, “Optimal control of atom transport for quantum gates in optical lattices”, Phys. Rev. A, 77:5 (2008), 052333, 9 pp.
- C. Gollub, M. Kowalewski, R. de Vivie-Riedle, “Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields”, Phys. Rev. Lett., 101:7 (2008), 073002, 4 pp.
- T. Koike, Y. Okudaira, “Time complexity and gate complexity”, Phys. Rev. A, 82:4 (2010), 042305
- K. Singer, U. Poschinger, M. Murphy, P. Ivanov, F. Ziesel, T. Calarco, F. Schmidt-Kaler, “Colloquium: Trapped ions as quantum bits: essential numerical tools”, Rev. Mod. Phys., 82:3 (2010), 2609–2632
- M. H. Goerz, T. Calarco, C. P. Koch, “The quantum speed limit of optimal controlled phasegates for trapped neutral atoms”, J. Phys. B, 44:15 (2011), 154011, 10 pp.
- M. M. Müller, D. M. Reich, M. Murphy, H. Yuan, J. Vala, K. B. Whaley, T. Calarco, C. P. Koch, “Optimizing entangling quantum gates for physical systems”, Phys. Rev. A, 84:4 (2011), 042315, 8 pp.
- D. M. Reich, M. Ndong, C. P. Koch, “Monotonically convergent optimization in quantum control using Krotov's method”, J. Chem. Phys., 136:10 (2012), 104103, 16 pp.
- M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero, T. Calarco, “Optimizing for an arbitrary perfect entangler. II. Application”, Phys. Rev. A, 91:6 (2015), 062307, 11 pp.
- M. H. Goerz, K. B. Whaley, C. P. Koch, “Hybrid optimization schemes for quantum control”, EPJ Quantum Technol., 2 (2015), 21
- D. Basilewitsch, R. Schmidt, D. Sugny, S. Maniscalco, C. P. Koch, “Beating the limits with initial correlations”, New J. Phys., 19 (2017), 113042, 16 pp.
- M. H. Goerz, F. Motzoi, K. B. Whaley, C. P. Koch, “Charting the circuit QED design landscape using optimal control theory”, npj Quantum Info., 3 (2017), 37, 10 pp.
- D. Basilewitsch, L. Marder, C. P. Koch, “Dissipative quantum dynamics and optimal control using iterative time ordering: an application to superconducting qubits”, Eur. Phys. J. B, 91:7 (2018), 161, 16 pp.
- M. H. Goerz, K. Jacobs, “Efficient optimization of state preparation in quantum networks using quantum trajectories”, Quantum Sci. Technol., 3:4 (2018), 045005
- D. Basilewitsch, F. Cosco, N. Lo Gullo, M. Möttönen, T. Ala-Nissilä, C. P. Koch, S. Maniscalco, Reservoir engineering using quantum optimal control for qubit reset, 2019, 9 pp.
- G. Jäger, Optimal quantum control of Bose–Einstein condensates, Thesis (Dr. rer. Nat.), Univ. Graz, 2015, 107 pp.
- J. J. W. H. Sorensen, M. O. Aranburu, T. Heinzel, J. F. Sherson, “Quantum optimal control in a chopped basis: applications in control of Bose–Einstein condensates”, Phys. Rev. A, 98:2 (2018), 022119
- I. I. Maximov, Z. Tošner, N. C. Nielsen, “Optimal control design of NMR and dynamic nuclear polarization experiments using monotonically convergent algorithms”, J. Chem. Phys., 128:18 (2008), 184505, 14 pp.
- I. I. Maximov, J. Salomon, G. Turinici, N. C. Nielsen, “A smoothing monotonic convergent optimal control algorithm for nuclear magnetic resonance pulse sequence design”, J. Chem. Phys., 132:8 (2010), 084107
- M. S. Vinding, I. I. Maximov, Z. Tošner, N. C. Nielsen, “Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods”, J. Chem. Phys., 137:5 (2012), 054203
- Программные средства, содержащие реализации метода Кротова
- M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich, C. P. Koch, Krotov: A Python implementation of Krotov's method for quantum optimal control, 2019, 26 pp.
- D. M. Reich, Efficient characterisation and optimal control of open quantum systems – mathematical foundations and physical applications, Diss. … Dr. rer. Nat., Univ. Kassel, 2015, 178 pp.
- R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, D. J. Tannor, “Wavepacket dancing: achieving chemical selectivity by shaping light pulses”, Chem. Phys., 139:1 (1989), 201–220
- M. Lapert, R. Tehini, G. Turinici, D. Sugny, “Monotonically convergent optimal control theory of quantum systems under a nonlinear interaction with the control field”, Phys. Rev. A, 78:2 (2008), 023408
- В. Ф. Кротов, “Об оптимизации управления квантовыми системами”, Докл. РАН, 423:3 (2008), 316–319
- В. Ф. Кротов, “Управление квантовыми системами и некоторые идеи теории оптимального управления”, Автомат. и телемех., 2009, № 3, 15–23
- K. Sundermann, R. de Vivie-Riedle, “Extensions to quantum optimal control algorithms and applications to special problems in state selective molecular dynamics”, J. Chem. Phys., 110:4 (1999), 1896–1904
- S. G. Schirmer, P. de Fouquieres, “Efficient algorithms for optimal control of quantum dynamics: the Krotov method unencumbered”, New J. Phys., 13 (2011), 073029, 35 pp.
- N. Boussaïd, M. Caponigro, T. Chambrion, “Periodic control laws for bilinear quantum systems with discrete spectrum”, Proc. Amer. Control Conf. (ACC), 2012, 5819–5824
- А. Ю. Китаев, “Квантовые вычисления: алгоритмы и исправление ошибок”, УМН, 52:6(318) (1997), 53–112
- А. Китаев, А. Шень, М. Вялый, Классические и квантовые вычисления, МНЦМО, М., 1999, 192 с.
- К. А. Валиев, “Квантовые компьютеры и квантовые вычисления”, УФН, 175:1 (2005), 3–39
- M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, 10th ann. ed., Cambridge Univ. Press, Cambridge, 2010, xxxi+676 pp.
- M. Ohya, I. Volovich, Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Theoret. Math. Phys., Springer, Dordrecht, 2011, xx+759 pp.
- А. С. Холево, Квантовые системы, каналы, информация, МЦНМО, М., 2010, 328 с.
- C. Jurdjevic, H. Sussmann, “Control systems on Lie groups”, J. Differential Equations, 12:2 (1972), 313–329
- A. Pechen, N. Il'in, “Trap-free manipulation in the Landau–Zener system”, Phys. Rev. A, 86:5 (2012), 052117, 6 pp.
- А. Н. Печень, Н. Б. Ильин, “Когерентное управление кубитом свободно от ловушек”, Избранные вопросы математической физики и анализа, Сборник статей. К 90-летию со дня рождения академика Василия Сергеевича Владимирова, Тр. МИАН, 285, МАИК “Наука/Интерпериодика”, М., 2014, 244–252
- S. van Frank, M. Bonneau, J. Schmiedmayer, S. Hild, C. Gross, M. Cheneau, I. Bloch, T. Pichler, A. Negretti, T. Calarco, S. Montangero, “Optimal control of complex atomic quantum systems”, Sci. Rep., 6 (2016), 34187
- U. Hohenester, P. K. Rekdal, A. Borzì, J. Schmiedmayer, “Optimal quantum control of Bose–Einstein condensates in magnetic microtraps”, Phys. Rev. A, 75:2 (2007), 023602
- R. Bücker, T. Berrada, S. van Frank, J.-F. Schaff, T. Schumm, J. Schmiedmayer, G. Jäger, J. Grond, U. Hohenester, “Vibrational state inversion of a Bose–Einstein condensate: optimal control and state tomography”, J. Phys. B, 46:10 (2013), 104012
- M. Hintermüller, D. Marahrens, P. A. Markowich, C. Sparber, “Optimal bilinear control of Gross–Pitaevskii equations”, SIAM J. Control Optim., 51:3 (2013), 2509–2543
- S. van Frank, A. Negretti, T. Berrada, R. Bücker, S. Montangero, J.-F. Schaff, T. Schumm, T. Calarco, J. Schmiedmayer, “Interferometry with non-classical motional states of a Bose–Einstein condensate”, Nature Comm., 5 (2014), 4009, 6 pp.
- D. Hocker, J. Yan, H. Rabitz, “Optimal nonlinear coherent mode transitions in Bose–Einstein condensates utilizing spatiotemporal controls”, Phys. Rev. A, 93:5 (2016), 053612
- А. Г. Бутковский, Ю. И. Самойленко, “Управляемость квантовых объектов”, Докл. АН СССР, 250:1 (1980), 51–55
- G. M. Huang, T. J. Tarn, J. W. Clark, “On the controllability of quantum-mechanical systems”, J. Math. Phys., 24:11 (1983), 2608–2618
- C. Altafini, “Controllability of quantum mechanical systems by root space decomposition of $mathfrak{su}(n)$”, J. Math. Phys., 43:5 (2002), 2051–2062
- G. Turinici, H. Rabitz, “Wavefunction controllability for finite-dimensional bilinear quantum systems”, J. Phys. A, 36:10 (2003), 2565–2576
- I. Kurniawan, G. Dirr, U. Helmke, “Controllability aspects of quantum dynamics: a unified approach for closed and open systems”, IEEE Trans. Automat. Control, 57:8 (2012), 1984–1996
- D. D'Alessandro, F. Albertini, R. Romano, “Exact algebraic conditions for indirect controllability of quantum systems”, SIAM J. Control Optim., 53:3 (2015), 1509–1542
- U. Boscain, J.-P. Gauthier, F. Rossi, M. Sigalotti, “Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems”, Comm. Math. Phys., 333:3 (2015), 1225–1239
- A. Agrachev, U. Boscain, J.-P. Gauthier, M. Sigalotti, “A note on time-zero controllability and density of orbits for quantum systems”, Proceedings of the IEEE 56th annual conference on decision and control (Melbourne, VIC, 2017), IEEE Conf. Decis. Control, 56, 2017, 5535–5538
- H. Fu, S. G. Schirmer, A. I. Solomon, “Complete controllability of finite-level quantum systems”, J. Phys. A, 34:8 (2001), 1679–1690
- F. Albertini, D. D'Alessandro, “Notions of controllability for bilinear multilevel quantum systems”, IEEE Trans. Automat. Control, 48:8 (2003), 1399–1403
- H. A. Rabitz, M. M. Hsieh, C. M. Rosenthal, “Quantum optimally controlled transition landscapes”, Science, 303:5666 (2004), 1998–2001
- K. W. Moore, H. Rabitz, “Exploring constrained quantum control landscapes”, J. Chem. Phys., 137:13 (2012), 134113, 16 pp.
- G. Riviello, C. Brif, R. Long, R.-B. Wu, K. Moore Tibbetts, T.-S. Ho, H. Rabitz, “Searching for quantum optimal control fields in the presence of singular critical points”, Phys. Rev. A, 90:1 (2014), 013404
- A. N. Pechen, D. J. Tannor, “Control of quantum transmission is trap free”, Canadian J. Chem., 92:2 (2014), 157–159
- A. N. Pechen, D. J. Tannor, “Are there traps in quantum control landscapes?”, Phys. Rev. Lett., 106:12 (2011), 120402
- P. de Fouquieres, S. G. Schirmer, “A closer look at quantum control landscapes and their implication for control optimization”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 16:3 (2013), 1350021, 24 pp.
- H. Rabitz, T.-S. Ho, R. Long, R. Wu, C. Brif, “Comment on ‘Are there traps in quantum control landscapes?’ ”, Phys. Rev. Lett., 108:19 (2012), 198901
- А. Н. Печень, Н. Б. Ильин, “О критических точках целевого функционала в задаче максимизации наблюдаемых кубита”, УМН, 70:4(424) (2015), 211–212
- Н. Б. Ильин, А. Н. Печень, “Условия отсутствия локальных экстремумов в задачах когерентного управления квантовыми системами”, Комплексный анализ, математическая физика и приложения, Сборник статей, Тр. МИАН, 301, МАИК “Наука/Интерпериодика”, М., 2018, 119–123
- В. А. Срочко, Итерационные методы решения задач оптимального управления, Физматлит, М., 2000, 160 с.
- В. Ф. Кротов, А. В. Булатов, О. В. Батурина, “Оптимизация линейных систем с управляемыми коэффициентами”, Автомат. и телемех., 2011, № 6, 64–78
- А. Ф. Филиппов, Дифференциальные уравнения с разрывной правой частью, Наука, М., 1985, 224 с.
- В. И. Гурман, В. А. Батурин, Е. В. Данилина и др. (ред.), Новые методы улучшения управляемых процессов, (ИрВЦ СО АН СССР), Наука, Новосибирск, 1987, 184 с.
- О. В. Батурина, О. В. Моржин, “Оптимальное управление системой спинов на основе метода глобального улучшения”, Автомат. и телемех., 2011, № 6, 79–86
- В. Ф. Кротов, О. В. Моржин, Е. А. Трушкова, “Разрывные решения задач оптимального управления. Итерационный метод оптимизации”, Автомат. и телемех., 2013, № 12, 31–55
- Y. Ohtsuki, G. Turinici, H. Rabitz, “Generalized monotonically convergent algorithms for solving quantum optimal control problems”, J. Chem. Phys., 120:12 (2004), 5509–5517
- P. Gross, D. Neuhauser, H. Rabitz, “Optimal control of curve-crossing systems”, J. Chem. Phys., 96:4 (1992), 2834–2845
- H. Jirari, F. W. J. Hekking, O. Buisson, “Optimal control of superconducting $N$-level quantum systems”, Europhys. Lett. EPL, 87:2 (2009), 28004, 6 pp.
- Е. А. Трушкова, “Алгоритмы глобального поиска оптимального управления”, Автомат. и телемех., 2011, № 6, 151–159
- K. E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge Monogr. Appl. Comput. Math., 4, Cambridge Univ. Press, Cambridge, 1997, xvi+552 pp.
- M. Ndong, H. Tal-Ezer, R. Kosloff, C. P. Koch, “A Chebychev propagator for inhomogeneous Schrödinger equations”, J. Chem. Phys., 130:12 (2009), 124108, 12 pp.
- P. de Fouquieres, S. G. Schirmer, S. J. Glaser, I. Kuprov, “Second order gradient ascent pulse engineering”, J. Magn. Reson., 212:2 (2011), 412–417
Supplementary files
