Fenchel–Nielsen coordinates and Goldman brackets
- Authors: Chekhov L.O.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 75, No 5 (2020)
- Pages: 153-190
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/133634
- DOI: https://doi.org/10.4213/rm9972
- ID: 133634
Cite item
Abstract
About the authors
Leonid Olegovich Chekhov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: chekhov@mi-ras.ru
Doctor of physico-mathematical sciences, no status
References
- D. G. L. Allegretti, “Laminations from the symplectic double”, Geom. Dedicata, 199 (2019), 27–86
- A. Berenstein, A. Zelevinsky, “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455
- M. Bertola, D. Korotkin, Extended Goldman symplectic structure in Fock–Goncharov coordinates, 2020 (v1 – 2019), 32 pp.
- F. Bonahon, “Shearing hyperbolic surfaces, bending pleated surfaces and Thurston's symplectic form”, Ann. Fac. Sci. Toulouse Math. (6), 5:2 (1996), 233–297
- В. М. Бухштабер, А. П. Веселов, “Топограф Конвея, $operatorname{PGL}_2(mathbb Z)$-динамика и двузначные группы”, УМН, 74:3(447) (2019), 17–62
- P. Buser, Geometry and spectra of compact Riemann surfaces, Progr. Math., 106, Birkhäuser Boston, Inc., Boston, MA, 1992, xiv+454 pp.
- Л. О. Чехов, “Симплектические структуры на пространствах Тейхмюллера $mathfrak T_{g,s,n}$ и кластерные алгебры”, Современные проблемы математической и теоретической физики, Сборник статей. К 80-летию со дня рождения академика Андрея Алексеевича Славнова, Тр. МИАН, 309, МИАН, М., 2020, 99–109
- L. Chekhov, M. Mazzocco, “Colliding holes in Riemann surfaces and quantum cluster algebras”, Nonlinearity, 31:1 (2018), 54–107
- L. O. Chekhov, M. Mazzocco, V. N. Rubtsov, “Painleve monodromy manifolds, decorated character varieties, and cluster algebras”, Int. Math. Res. Not. IMRN, 2017:24 (2017), 7639–7691
- L. Chekhov, M. Mazzocco, V. Rubtsov, “Algebras of quantum monodromy data and character varieties”, Geometry and physics, A festschrift in honour of Nigel Hitchin, v. 1, Oxford Univ. Press, Oxford, 2018, 39–68
- Л. О. Чехов, Р. Ч. Пеннер, “Введение в квантовую теорию Тeрстона”, УМН, 58:6(354) (2003), 93–138
- L. Chekhov, M. Shapiro, Darboux coordinates for symplectic groupoid and cluster algebras, 2020, 41 pp.
- L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014), 2746–2772
- N. Do, P. Norbury, “Weil–Petersson volumes and cone surfaces”, Geom. Dedicata, 141 (2009), 93–107
- B. Eynard, N. Orantin, Weil–Petersson volume of moduli spaces, Mirzakhani's recursion and matrix models, 2007, 9 pp.
- L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254
- V. V. Fock, Description of moduli space of projective structures via fat graphs, 1994 (v1 – 1993), 17 pp.
- V. V. Fock, Dual Teichmüller spaces, 1998 (v1 – 1997), 32 pp.
- В. В. Фок, Л. О. Чехов, “Квантовые пространства Тейхмюллера”, ТМФ, 120:3 (1999), 511–528
- В. В. Фок, Л. О. Чехов, “Квантовые модулярные преобразования, соотношение пятиугольника и геодезические”, Математическая физика. Проблемы квантовой теории поля, Сборник статей. К 65-летию со дня рождения академика Людвига Дмитриевича Фаддеева, Тр. МИАН, 226, Наука, МАИК “Наука/Интерпериодика”, М., 1999, 163–179
- V. Fock, A. Goncharov, “Moduli spaces of local systems and higher Teichmüller theory”, Publ. Math. Inst. Hautes Etudes Sci., 103 (2006), 1–211
- V. V. Fock, A. A. Rosly, “Moduli space of flat connections as a Poisson manifold”, Advances in quantum field theory and statistical mechanics: 2nd Italian–Russian collaboration (Como, 1996), Internat. J. Modern Phys. B, 11:26-27 (1997), 3195–3206
- S. Fomin, M. Shapiro, D. Thurston, “Cluster algebras and triangulated surfaces. I. Cluster complexes”, Acta Math., 201:1 (2008), 83–146
- S. Fomin, D. Thurston, Cluster algebras and triangulated surfaces. Part II: Lambda lengths, Mem. Amer. Math. Soc., 225, no. 1223, Amer. Math. Soc., Providence, RI, 2018, v+97 pp.
- S. Fomin, A. Zelevinsky, “Cluster algebras I: Foundations”, J. Amer. Math. Soc., 15:2 (2002), 497–529
- S. Fomin, A. Zelevinsky, “Cluster algebra. II: Finite type classification”, Invent. Math., 154:1 (2003), 63–121
- W. M. Goldman, “Invariant functions on Lie groups and Hamiltonian flows of surface group representations”, Invent. Math., 85:2 (1986), 263–302
- L. Hollands, O. Kidwai, “Higher length-twist coordinates, generalized Heun's opers, and twisted superpotentials”, Adv. Theor. Math. Phys., 22:7 (2018), 1713–1822
- Yi Huang, Zhe Sun, McShane identities for higher Teichmüller theory and the Goncharov–Shen potential, 2020 (v1 – 2019), 107 pp.
- R. M. Kashaev, “Quantization of Teichmüller spaces and the quantum dilogarithm”, Lett. Math. Phys., 43:2 (1998), 105–115
- R. M. Kaufmann, R. C. Penner, “Closed/open string diagrammatics”, Nuclear Phys. B, 748:3 (2006), 335–379
- F. Labourie, G. McShane, “Cross ratios and identities for higher Teichmüller–Thurston theory”, Duke Math. J., 149:2 (2009), 279–345
- G. McShane, A remarkable identity for lengths of curves, Ph.D. thesis, Univ. of Warwick, Coventry, 1991, iii+28 pp.
- G. McShane, “Simple geodesics and a series constant over Teichmüller space”, Invent. Math., 132:3 (1998), 607–632
- G. McShane, Length series on Teichmüller space, 2004, 16 pp.
- M. Mirzakhani, “Simple geodesics and Weil–Petersson volumes of moduli spaces of bordered Riemann surfaces”, Invent. Math., 167:1 (2007), 179–222
- M. Mirzakhani, “Weil–Petersson volumes and intersection theory on the moduli space of curves”, J. Amer. Math. Soc., 20:1 (2007), 1–23
- S. Morier-Genoud, V. Ovsienko, “$q$-deformed rationals and $q$-continued fractions”, Forum Math. Sigma, 8 (2020), e13, 55 pp.
- M. Mulase, B. Safnuk, “Mirzakhani's recursion relations, Virasoro constraints and the KdV hierarchy”, Indian J. Math., 50:1 (2008), 189–228
- G. Musiker, R. Schiffler, L. Williams, “Positivity for cluster algebras from surfaces”, Adv. Math., 227:6 (2011), 2241–2308
- G. Musiker, R. Schiffler, L. Williams, “Bases for cluster algebras from surfaces”, Compositio Math., 149:2 (2013), 217–263
- G. Musiker, L. Williams, “Matrix formulae and skein relations for cluster algebras from surfaces”, Int. Math. Res. Not. IMRN, 2013:13 (2013), 2891–2944
- N. Nekrasov, A. Rosly, S. Shatashvili, “Darboux coordinates, Yang–Yang functional, and gauge theory”, Nuclear Phys. B Proc. Suppl., 216 (2011), 69–93
- R. C. Penner, “The decorated Teichmüller space of punctured surfaces”, Comm. Math. Phys., 113:2 (1987), 299–339
- R. C. Penner, “Weil–Petersson volumes”, J. Differential Geom., 35:3 (1992), 559–608
- G. Schrader, A. Shapiro, “A cluster realization of $U_q(mathfrak{sl}_mathfrak{n})$ from quantum character varieties”, Invent. Math., 216:3 (2019), 799–846
- W. P. Thurston, Minimal stretch maps between hyperbolic surfaces, preprint, 1984
- S. Wolpert, “The Fenchel–Nielsen deformation”, Ann. of Math. (2), 115:3 (1982), 501–528
- S. Wolpert, “On the symplectic geometry of deformations of a hyperbolic surface”, Ann. of Math. (2), 117:2 (1983), 207–234
Supplementary files
