Strong and weak associativity of weighted Sobolev spaces of the first order

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A brief overview of the recent results on the problem of characterization of associative and double associative spaces of function classes, including both ideal and non-ideal structures, is presented. The latter include two-weighted Sobolev spaces of the first order on the positive semi- axis. It is shown that, in contrast to the notion of duality, associativity can be ‘strong’ or ‘weak’. In addition, double associative spaces are further divided into three types. In this context it is established that a weighted Sobolev space of functions with compact support possesses weak associative reflexivity, while the strong associative space of a weak associative space is trivial. Weighted classes of Cesàro and Copson type have similar properties; for these classes the problem us fully investigated, and their connections with Sobolev spaces with power weights are established. As an application, the problem of boundedness of the Hilbert transform from a weighted Sobolev space to a weighted Lebesgue space is considered.Bibliography: 49 titles.

About the authors

Vladimir Dmitrievich Stepanov

Computer Centre of Far Eastern Branch RAS; Steklov Mathematical Institute of Russian Academy of Sciences

Email: stepanov@mi-ras.ru
Doctor of physico-mathematical sciences, Professor

Elena Pavlovna Ushakova

Steklov Mathematical Institute of Russian Academy of Sciences; V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences

Email: elenau@inbox.ru
Doctor of physico-mathematical sciences, no status

References

  1. C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp.
  2. Д. В. Прохоров, В. Д. Степанов, Е. П. Ушакова, “Характеризация функциональных пространств, ассоциированных с весовыми пространствами Соболева первого порядка на действительной оси”, УМН, 74:6(450) (2019), 119–158
  3. D. V. Prokhorov, V. D. Stepanov, E. P. Ushakova, “On associate spaces of weighted Sobolev space on the real line”, Math. Nachr., 290:5-6 (2017), 890–912
  4. G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc., 120, no. 576, Amer. Math. Soc., Providence, RI, 1996, viii+130 pp.
  5. K.-G. Grosse-Erdmann, The blocking technique, weighted mean operators and Hardy's inequality, Lecture Notes in Math., 1679, Springer-Verlag, Berlin, 1998, x+114 pp.
  6. S. V. Astashkin, L. Maligranda, “Structure of Cesàro function spaces: a survey”, Function spaces X, Banach Center Publ., 102, Polish Acad. Sci. Inst. Math., Warsaw, 2014, 13–40
  7. K. Lesnik, L. Maligranda, “Abstract Cesàro spaces. Duality”, J. Math. Anal. Appl., 424:2 (2015), 932–951
  8. B. D. Hassard, D. A. Hussein, “On Cesàro function spaces”, Tamkang J. Math., 4 (1973), 19–25
  9. A. Kaminska, D. Kubiak, “On the dual of Cesàro function space”, Nonlinear Anal., 75:5 (2012), 2760–2773
  10. G. Sinnamon, “Transferring monotonicity in weighted norm inequalities”, Collect. Math., 54:2 (2003), 181–216
  11. M. Carro, A. Gogatishvili, J. Martin, L. Pick, “Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces”, J. Operator Theory, 59:2 (2008), 309–332
  12. В. Д. Степанов, “Об ассоциированных пространствах к весовым пространствам Чезаро и Копсона”, Матем. заметки, 111:3 (2022), 443–450
  13. E. Sawyer, “Boundedness of classical operators on classical Lorentz spaces”, Studia Math., 96:2 (1990), 145–158
  14. А. Гогатишвили, В. Д. Степанов, “Редукционные теоремы для весовых интегральных неравенств на конусе монотонных функций”, УМН, 68:4(412) (2013), 3–68
  15. V. D. Stepanov, “The weighted Hardy's inequality for nonincreasing functions”, Trans. Amer. Math. Soc., 338:1 (1993), 173–186
  16. G. Sinnamon, “Hardy's inequality and monotonicity”, Function spaces, differential operators and nonlinear analysis (Milovy, 2004), Math. Inst. Acad. Sci. Czech Republ., Prague, 2005, 292–310
  17. S. V. Astashkin, L. Maligranda, “Structure of Cesàro function spaces”, Indag. Math. (N. S.), 20:3 (2009), 329–379
  18. М. Л. Гольдман, П. П. Забрейко, “Оптимальное восстановление банахова функционального пространства по конусу неотрицательных функций”, Функциональные пространства и смежные вопросы анализа, Сборник статей. К 80-летию со дня рождения члена-корреспондента РАН Олега Владимировича Бесова, Труды МИАН, 284, МАИК “Наука/Интерпериодика”, М., 2014, 142–156
  19. В. Д. Степанов, “Об оптимальных пространствах Банаха, содержащих весовой конус монотонных или квазивогнутых функций”, Матем. заметки, 98:6 (2015), 907–922
  20. Г. Харди, Дж. И. Литтлвуд, Г. Полиа, Неравенства, ИЛ, М., 1948, 456 с.
  21. D. V. Prokhorov, “On the associated spaces for altered Cesàro space”, Anal. Math., 48:4 (2022), 1169–1183
  22. D. V. Prokhorov, “On the dual spaces for weighted altered Cesàro and Copson spaces”, J. Math. Anal. Appl., 514:2 (2022), 126325, 11 pp.
  23. V. D. Stepanov, “On Cesàro and Copson type function spaces. Reflexivity”, J. Math. Anal. Appl., 507:1 (2022), 125764, 18 pp.
  24. R. A. Adams, Sobolev spaces, Pure Appl. Math., 65, Academic Press, New York–London, 1975, xviii+268 pp.
  25. С. Л. Соболев, Некоторые применения функционального анализа в математической физике, 3-е изд., перераб. и доп., Наука, М., 1988, 334 с.
  26. A. Kaminska, M. .{Z}yluk, “Uniform convexity, reflexivity, superreflexivity and $B$ convexity of generalized Sobolev spaces $W^{1,Phi}$”, J. Math. Anal. Appl., 509:1 (2022), 125925, 31 pp.
  27. A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space”, Eurasian Math. J., 12:1 (2021), 39–48
  28. A. Kalybay, R. Oinarov, “Boundedness of Riemann–Liouville operator from weighted Sobolev space to weighted Lebesgue space for $1
  29. A. Kalybay, R. Oinarov, “Kernel operators and their boundedness from weighted Sobolev space to weighted Lebesgue space”, Turkish J. Math., 43:1 (2019), 301–315
  30. Р. Ойнаров, “Ограниченность интегральных операторов в весовых пространствах Соболева”, Изв. РАН. Сер. матем., 78:4 (2014), 207–223
  31. R. Oinarov, “Boundedness of integral operators from weighted Sobolev space to weighted Lebesgue space”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1021–1038
  32. А. А. Беляев, А. А. Шкаликов, “Мультипликаторы в пространствах бесселевых потенциалов: случай индексов неотрицательной гладкости”, Матем. заметки, 102:5 (2017), 684–699
  33. А. А. Беляев, А. А. Шкаликов, “Мультипликаторы в пространствах бесселевых потенциалов: случай индексов гладкости разного знака”, Алгебра и анализ, 30:2 (2018), 76–96
  34. А. А. Шкаликов, Дж.-Г. Бак, “Мультипликаторы в дуальных соболевских пространствах и операторы Шрeдингера с потенциалами-распределениями”, Матем. заметки, 71:5 (2002), 643–651
  35. R. Oinarov, “On weighted norm inequalities with three weights”, J. London Math. Soc. (2), 48:1 (1993), 103–116
  36. S. P. Eveson, V. D. Stepanov, E. P. Ushakova, “A duality principle in weighted Sobolev spaces on the real line”, Math. Nachr., 288:8-9 (2015), 877–897
  37. A. Kufner, L.-E. Persson, N. Samko, Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ., Hackensack, NJ, 2017, xx+459 pp.
  38. В. Д. Степанов, Е. П. Ушакова, “Об интегральных операторах с переменными пределами интегрирования”, Функциональные пространства, гармонический анализ, дифференциальные уравнения, Сборник статей. К 95-летию со дня рождения академика Сергея Михайловича Никольского, Труды МИАН, 232, Наука, МАИК “Наука/Интерпериодика”, М., 2001, 298–317
  39. G. Leoni, A first course in Sobolev spaces, Grad. Stud. Math., 105, Amer. Math. Soc., Providence, RI, 2009, xvi+607 pp.
  40. К. И. Бабенко, “О сопряженных функциях”, Докл. АН СССР, 62:2 (1948), 157–160
  41. R. Hunt, B. Muckenhoupt, R. Wheeden, “Weighted norm inequalities for the conjugate function and Hilbert transform”, Trans. Amer. Math. Soc., 176 (1973), 227–251
  42. M. T. Lacey, E. T. Sawyer, Chun-Yen Shen, I. Uriarte-Tuero, “Two-weight inequality for the Hilbert transform: a real variable characterization. I”, Duke Math. J., 163:15 (2014), 2795–2820
  43. M. T. Lacey, “Two-weight inequality for the {H}ilbert transform: a real variable characterization. II”, Duke Math. J., 163:15 (2014), 2821–2840
  44. T. P. Hytönen, “The two-weight inequality for the Hilbert transform with general measures”, Proc. Lond. Math. Soc. (3), 117:3 (2018), 483–526
  45. E. Liflyand, “Weighted estimates for the discrete Hilbert transform”, Methods of Fourier analysis and approximation theory, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2016, 59–69
  46. V. D. Stepanov, S. Yu. Tikhonov, “Two power-weight inequalities for the Hilbert transform on the cones of monotone functions”, Complex Var. Elliptic Equ., 56:10-11 (2011), 1039–1047
  47. V. D. Stepanov, “On the boundedness of the Hilbert transform from weighted Sobolev space to weighted Lebesgue space”, J. Fourier Anal. Appl., 28:3 (2022), 46, 17 pp.
  48. A. M. Abylayeva, L.-E. Persson, “Hardy type inequalities and compactness of a class of integral operators with logarithmic singularities”, Math. Inequal. Appl., 21:1 (2018), 201–215
  49. V. D. Stepanov, E. P. Ushakova, “Kernel operators with variable intervals of integration in Lebesgue spaces and applications”, Math. Inequal. Appl., 13:3 (2010), 449–510

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Stepanov V.D., Ushakova E.P.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».