Smooth DG algebras and twisted tensor product
- 作者: Orlov D.O.1
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- 期: 卷 78, 编号 5 (2023)
- 页面: 65-92
- 栏目: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/140491
- DOI: https://doi.org/10.4213/rm10139
- ID: 140491
如何引用文章
详细
作者简介
Dmitri Orlov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: orlov@mi-ras.ru
Doctor of physico-mathematical sciences, no status
参考
- A. I. Bondal, M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36
- D. A. Buell, Binary quadratic forms. Classical theory and modern computations, Springer-Verlag, New York, 1989, x+247 pp.
- A. Čap, H. Schichl, J. Vanžura, “On twisted tensor products of algebras”, Comm. Algebra, 23:12 (1995), 4701–4735
- Д. В. Дубнов, “О базисных алгебрах конечной гомологической размерности”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 1997, № 2, 15–17
- A. J. Efimov, “Categorical smooth compactifications and generalized Hodge-to-de Rham degeneration”, Invent. Math., 222:2 (2020), 667–694
- A. Elagin, “Calculating dimension of triangulated categories: path algebras, their tensor powers and orbifold projective lines”, J. Algebra, 592 (2022), 357–401
- P. Gabriel, “Auslander–Reiten sequences and representation-finite algebras”, Representation theory (Carleton Univ., Ottawa, ON, 1979), v. I, Lecture Notes in Math., 831, Springer, Berlin, 1980, 1–71
- E. L. Green, “Remarks on projective resolutions”, Representation theory (Carleton Univ., Ottawa, ON, 1979), v. II, Lecture Notes in Math., 832, Springer, Berlin, 1980, 259–279
- D. Happel, “A family of algebras with two simple modules and Fibonacci numbers”, Arch. Math. (Basel), 57:2 (1991), 133–139
- D. Happel, D. Zacharia, “Algebras of finite global dimension”, Algebras, quivers and representations, Abel Symp., 8, Springer, Heidelberg, 2013, 95–113
- K. Igusa, “Notes on the no loops conjecture”, J. Pure Appl. Algebra, 69:2 (1990), 161–176
- B. Keller, “Deriving DG categories”, Ann. Sci. Ecole Norm. Sup. (4), 27:1 (1994), 63–102
- E. Kirkman, J. Kuzmanovich, “Algebras with large homological dimensions”, Proc. Amer. Math. Soc., 109:4 (1990), 903–906
- A. Kuznetsov, E. Shinder, Homologically finite-dimensional objects in triangulated categories, 2023 (v1 – 2022), 32 pp.
- Qunhua Liu, Dong Yang, “Stratifications of algebras with two simple modules”, Forum Math., 28:1 (2016), 175–188
- V. A. Lunts, “Categorical resolution of singularities”, J. Algebra, 323:10 (2010), 2977–3003
- V. A. Lunts, O. M. Schnürer, “Smoothness of equivariant derived categories”, Proc. Lond. Math. Soc. (3), 108:5 (2014), 1226–1276
- F. H. Membrillo-Hernandez, “Quasi-hereditary algebras with two simple modules and Fibonacci numbers”, Comm. Algebra, 22:11 (1994), 4499–4509
- D. Orlov, “Remarks on generators and dimensions of triangulated categories”, Mosc. Math. J., 9:1 (2009), 143–149
- D. Orlov, “Smooth and proper noncommutative schemes and gluing of DG categories”, Adv. Math., 302 (2016), 59–105
- Д. О. Орлов, “Производные некоммутативные схемы, геометрические реализации и конечномерные алгебры”, УМН, 73:5(443) (2018), 123–182
- D. Orlov, “Finite-dimensional differential graded algebras and their geometric realizations”, Adv. Math., 366 (2020), 107096, 33 pp.
- Д. О. Орлов, “Скрученные тензорные произведения ДГ алгебр”, УМН, 76:6(462) (2021), 199–200
- R. Rouquier, “Dimensions of triangulated categories”, J. K-Theory, 1:2 (2008), 193–256
补充文件
