Multidimensional Hamiltonian systems: non-integrability and diffusion
- Авторлар: Kozlov V.V.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 80, № 5 (2025)
- Беттер: 3-22
- Бөлім: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/331267
- DOI: https://doi.org/10.4213/rm10261
- ID: 331267
Дәйексөз келтіру
Аннотация
Авторлар туралы
Valery Kozlov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: vvkozlov@presidium.ras.ru
Scopus Author ID: 7402207934
ResearcherId: Q-4001-2016
Doctor of physico-mathematical sciences, Professor
Әдебиет тізімі
- U. Bessi, “An approach to Arnold's diffusion through the calculus of variations”, Nonlinear Anal., 26:6 (1996), 1115–1135
- H. W. Broer, G. B. Huitema, M. B. Sevryuk, Quasi-periodic motions in families of dynamical systems. Order amidst chaos, Lecture Notes in Math., 1645, Springer-Verlag, Berlin, 1996, xii+196 pp.
- I. Baldoma, M. Giralt, M. Guardia, Coorbital homoclinic and chaotic dynamics in the restricted 3-body problem, 2023, 59 pp.
- Qinbo Chen, R. de la Llave, “Analytic genericity of diffusing orbits in a priori unstable Hamiltonian systems”, Nonlinearity, 35:4 (2022), 1986–2019
- A. Clarke, J. Fejoz, M. Guàrdia, “Topological shadowing methods in Arnold diffusion: weak torsion and multiple time scales”, Nonlinearity, 36:1 (2023), 426–457
- D. Treschev, “Arnold diffusion far from strong resonances in multidimensional a priori unstable Hamiltonian systems”, Nonlinearity, 25:9 (2012), 2717–2757
- V. V. Kozlov, “Formal stability, stability for most initial conditions and diffusion in analitic systems of differential equations”, Regul. Chaotic Dyn., 28:3 (2023), 251–264
- B. Fayad, “Lyapunov unstable elliptic equilibria”, J. Amer. Math. Soc., 36:1 (2023), 81–106
- V. V. Kozlov, “Symmetries and regular behavior in Hamiltonian systems”, Chaos, 6:1 (1996), 1–5
- L. H. Eliasson, “Absolutely convergent series expansions for quasi periodic motions”, Math. Phys. Electron. J., 2 (1996), 4, 33 pp.
- M. Bartuccelli, G. Gentile, “Lindstedt series for perturbations of isochronous systems: a review of the general theory”, Rev. Math. Phys., 14:2 (2002), 121–171
- L. Biasco, L. Chierchia, D. Treschev, “Stability of nearly integrable, degenerate Hamiltonian systems with two degrees of freedom”, J. Nonlinear Sci., 16:1 (2006), 79–107
- W. H. Gottschalk, G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., 36, Amer. Math. Soc., Providence, RI, 1955, vii+151 pp.
- R. Krikorian, “On the divergence of Birkhoff normal forms”, Publ. Math. Inst. Hautes Etudes Sci., 135 (2022), 1–181
- V. G. Gelfreich, V. F. Lazutkin, M. B. Tabanov, “Exponentially small splittings in Hamiltonian systems”, Chaos, 1:2 (1991), 137–142
- D. V. Treschev, “An averaging method for Hamiltonian systems, exponentially close to integrable ones”, Chaos, 6:1 (1996), 6–14
- D. V. Treschev, “Splitting of separatrices for a pendulum with rapidly oscillating suspension point”, Russ. J. Math. Phys., 5:1 (1997), 63–98
Қосымша файлдар

