Brief introduction in greedy approximation
- 作者: Temlyakov V.N.1,2,3,4
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
- Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia
- University of South Carolina, Columbia, USA
- 期: 卷 80, 编号 5 (2025)
- 页面: 23-104
- 栏目: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/331268
- DOI: https://doi.org/10.4213/rm10245
- ID: 331268
如何引用文章
详细
作者简介
Vladimir Temlyakov
Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia; Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia; University of South Carolina, Columbia, USA
Email: temlyakovv@gmail.com
Doctor of physico-mathematical sciences, Professor
参考
- F. Albiac, J. L. Ansorena, V. Temlyakov, “Twenty-five years of greedy bases”, J. Approx. Theory, 307 (2025), 106141, 23 pp.
- S. Bahmani, B. Raj, P. T. Boufounos, “Greedy sparsity-constrained optimization”, J. Mach. Learn. Res., 14 (2013), 807–841
- A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal function”, IEEE Trans. Inform. Theory, 39:3 (1993), 930–945
- A. R. Barron, A. Cohen, W. Dahmen, R. A. DeVore, “Approximation and learning by greedy algorithms”, Ann. Statist., 36:1 (2008), 64–94
- D. Bazarkhanov, V. Temlyakov, “Nonlinear tensor product approximation of functions”, J. Complexity, 31:6 (2015), 867–884
- K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Trans. Algorithms, 6:4 (2010), 63, 30 pp.
- J. A. Cochran, “Composite integral operators and nuclearity”, Ark. Mat., 15:1-2 (1977), 215–222
- G. Davis, S. Mallat, M. Avellaneda, “Adaptive greedy approximations”, Constr. Approx., 13:1 (1997), 57–98
- A. V. Dereventsov, “On the approximate weak Chebyshev greedy algorithm in uniformly smooth Banach spaces”, J. Math. Anal. Appl., 436:1 (2016), 288–304
- A. Dereventsov, Convergence and rate of convergence of approximate greedy-type algorithms, Thesis (Ph. D.), Univ. of South Carolina, 2017, 88 pp.
- A. V. Dereventsov, V. N. Temlyakov, “A unified way of analyzing some greedy algorithms”, J. Funct. Anal., 277:12 (2019), 108286, 30 pp.
- A. V. Dereventsov, V. N. Temlyakov, “Biorthogonal greedy algorithms in convex optimization”, Appl. Comput. Harmon. Anal., 60:3 (2022), 489–511
- R. A. DeVore, V. N. Temlyakov, “Some remarks on greedy algorithms”, Adv. Comput. Math., 5:2-3 (1996), 173–187
- R. A. DeVore, V. N. Temlyakov, “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394
- S. Dilworth, G. Garrigos, E. Hernandez, D. Kutzarova, V. Temlyakov, “Lebesgue-type inequalities in greedy approximation”, J. Funct. Anal., 280:5 (2021), 108885, 37 pp.
- M. J. Donahue, L. Gurvits, C. Darken, E. Sontag, “Rate of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220
- Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
- M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, “Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems”, IEEE J. Sel. Topics Signal Process, 1:4 (2007), 586–597
- S. Foucart, H. Rauhut, A mathematical introduction to compressive sensing, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, New York, 2013, xviii+625 pp.
- I. Fredholm, “Sur une classe d'equations fonctionnelles”, Acta Math., 27:1 (1903), 365–390
- J. H. Friedman, W. Stuetzle, “Projection pursuit regression”, J. Amer. Statist. Assoc., 76:376 (1981), 817–823
- M. Ganichev, N. J. Kalton, “Convergence of the weak dual greedy algorithm in $L_p$-spaces”, J. Approx. Theory, 124:1 (2003), 89–95
- Zheming Gao, G. Petrova, “Rescaled pure greedy algorithm for convex optimization”, Calcolo, 56:2 (2019), 15, 14 pp.
- A. V. Gasnikov, V. N. Temlyakov, “On greedy approximation in complex Banach spaces”, УМН, 79:6(480) (2024), 39–56
- A. C. Gilbert, S. Muthukrishnan, M. J. Strauss, “Approximation of functions over redundant dictionaries using coherence”, Proceedings of the fourteenth annual ACM–SIAM symposium on discrete algorithms (Baltimore, MD, 2003), ACM, New York, 2003, 243–252
- E. Hille, J. D. Tamarkin, “On the characteristic values of linear integral equations”, Acta Math., 57:1 (1931), 1–76
- P. J. Huber, “Projection pursuit”, Ann. Statist., 13:2 (1985), 435–475
- G. Ivanov, “Approximate Caratheodory's theorem in uniformly smooth Banach spaces”, Discrete Comput. Geom., 66:1 (2021), 273–280
- M. Jaggi, “Revisiting Frank–Wolfe: projection-free sparse convex optimization”, Proceedings of the 30th international conference on machine learning (Atlanta, GA, 2013), Proc. Mach. Learn. Res. (PMLR), 28, no. 1, 2013, 427–435
- L. K. Jones, “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882
- L. K. Jones, “A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training”, Ann. Statist., 20:1 (1992), 608–613
- J. M. Klusowskii, J. W. Siegel, Sharp convergence rates for matching pursuit, 2024 (v1 – 2023), 26 pp.
- S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379
- S. V. Konyagin, V. N. Temlyakov, “Rate of convergence of pure greedy algorithm”, East J. Approx., 5:4 (1999), 493–499
- E. D. Livshitz, V. N. Temlyakov, “Two lower estimates in greedy approximation”, Constr. Approx., 19:4 (2003), 509–523
- E. D. Livshitz, V. N. Temlyakov, “Sparse approximation and recovery by greedy algorithms”, IEEE Trans. Inform. Theory, 60:7 (2014), 3989–4000
- Yu. Malykhin, “Matrix and tensor rigidity and $L_p$-approximation”, J. Complexity, 72 (2022), 101651, 13 pp.
- G. Petrova, “Rescaled pure greedy algorithm for Hilbert and Banach spaces”, Appl. Comput. Harmon. Anal., 41:3 (2016), 852–866
- D. Savu, Sparse approximation in Banach spaces, Thesis (Ph. D.), Univ. of South Carolina, 2009, 67 pp.
- D. Savu, V. N. Temlyakov, “Lebesgue-type inequalities for greedy approximation in Banach spaces”, IEEE Trans. Inform. Theory, 59:2 (2013), 1098–1106
- E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. I”, Math. Ann., 63:4 (1907), 433–476
- S. Shalev-Shwartz, N. Srebro, Tong Zhang, “Trading accuracy for sparsity in optimization problems with sparsity constraints”, SIAM J. Optim., 20:6 (2010), 2807–2832
- F. Smithies, “The eigen-values and singular values of integral equations”, Proc. London Math. Soc. (2), 43:4 (1937), 255–279
- V. N. Temlyakov, “Greedy algorithms and $M$-term approximation with regard to redundant dictionaries”, J. Approx. Theory, 98:1 (1999), 117–145
- V. N. Temlyakov, “Weak greedy algorithms”, Adv. Comput. Math., 12:2-3 (2000), 213–227
- V. N. Temlyakov, “Greedy algorithms in Banach spaces”, Adv. Comput. Math., 14:3 (2001), 277–292
- V. N. Temlyakov, “A criterion for convergence of weak greedy algorithms”, Adv. Comput. Math., 17:3 (2002), 269–280
- V. N. Temlyakov, “Nonlinear methods of approximation”, Found. Comput. Math., 3:1 (2003), 33–107
- V. N. Temlyakov, “Greedy-type approximation in Banach spaces and applications”, Constr. Approx., 21:2 (2005), 257–292
- V. N. Temlyakov, “Greedy approximations”, Foundations of computational mathematics (Santander, 2005), London Math. Soc. Lecture Note Ser., 331, Cambridge Univ. Press, Cambridge, 2006, 371–394
- V. N. Temlyakov, “Greedy expansions in Banach spaces”, Adv. Comput. Math., 26:4 (2007), 431–449
- V. Temlyakov, “Greedy approximation in Banach spaces”, Banach spaces and their applications in analysis, Walter de Gruyter GmbH & Co. KG, Berlin, 2007, 193–208
- V. Temlyakov, “Greedy algorithms with prescribed coefficients”, J. Fourier Anal. Appl., 13:1 (2007), 71–86
- V. N. Temlyakov, “Relaxation in greedy approximation”, Constr. Approx., 28:2 (2008), 1–25
- V. Temlyakov, Greedy approximation, Cambridge Monogr. Appl. Comput. Math., 20, Cambridge Univ. Press, Cambridge, 2011, xiv+418 pp.
- V. N. Temlyakov, “Sparse approximation and recovery by greedy algorithms in Banach spaces”, Forum Math. Sigma, 2 (2014), e12, 26 pp.
- V. N. Temlyakov, “Greedy approximation in convex optimization”, Constr. Approx., 41:2 (2015), 269–296
- V. Temlyakov, Sparse approximation with bases, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, xii+261 pp.
- V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
- V. Temlyakov, “On the rate of convergence of greedy algorithms”, Mathematics, 11:11 (2023), 2559, 15 pp.
- A. Tewari, P. K. Ravikumar, I. S. Dhillon, “Greedy algorithms for structurally constrained high dimensional problems”, NIPS {'}11: Proceedings of the 25th international conference on neural information processing systems, Adv. Neural Inf. Process. Syst., 24, MIT Press, Cambridge, MA, 2011, 882–890
- H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)”, Math. Ann., 71:4 (1912), 441–479
- Tong Zhang, “Sequential greedy approximation for certain convex optimization problems”, IEEE Trans. Inform. Theory, 49:3 (2003), 682–691
- P. A. Borodin, E. Kopecka, “Alternating projections, remotest projections, and greedy approximation”, J. Approx. Theory, 260 (2020), 105486, 16 pp.
- P. A. Borodin, E. Kopecka, “Convergence of remote projections onto convex sets”, Pure Appl. Funct. Anal., 8:6 (2023), 1603–1620
- Ar. R. Valiullin, Al. R. Valiullin, “Sharp conditions for the convergence of greedy expansions with prescribed coefficients”, Open Math., 19:1 (2021), 1–10
- Ar. R. Valiullin, Al. R. Valiullin, V. V. Galatenko, “Greedy expansions with prescribed coefficients in Hilbert spaces”, Int. J. Math. Math. Sci., 2018 (2018), 4867091, 6 pp.
- Ar. R. Valiullin, Al. R. Valiullin, A. P. Solodov, “Sharp sufficient condition for the convergence of greedy expansions with errors in coefficient computation”, Demonstr. Math., 55:1 (2022), 254–264
补充文件

