On the spectrum of random Gram matrices of large dimension in the case of partial dependence
- Authors: Yaskov P.A.1
-
Affiliations:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Issue: Vol 80, No 5 (2025)
- Pages: 105-174
- Section: Articles
- URL: https://journal-vniispk.ru/0042-1316/article/view/331269
- DOI: https://doi.org/10.4213/rm10260
- ID: 331269
Cite item
Abstract
About the authors
Pavel Andreevich Yaskov
Steklov Mathematical Institute of Russian Academy of Sciences
Email: yaskov@mi-ras.ru
Scopus Author ID: 36635347000
ResearcherId: S-2745-2016
Candidate of physico-mathematical sciences, no status
References
- R. Adamczak, “On the Marchenko–Pastur and circular laws for some classes of random matrices with dependent entries”, Electron. J. Probab., 16 (2011), 37, 1065–1095
- R. Adamczak, “Some remarks on the Dozier–Silverstein theorem for random matrices with dependent entries”, Random Matrices Theory Appl., 2:2 (2013), 1250017, 46 pp.
- A. Ambainis, A. W. Harrow, M. B. Hastings, “Random tensor theory: extending random matrix theory to mixtures of random product states”, Comm. Math. Phys., 310:1 (2012), 25–74
- S. Anatolyev, P. Yaskov, “Asymptotics of diagonal elements of projection matrices under many instruments/regressors”, Econometric Theory, 33:3 (2017), 717–738
- Z. D. Bai, “Methodologies in spectral analysis of large dimensional random matrices, a review”, Statist. Sinica, 9:3 (1999), 611–677
- Zhidong Bai, J. W. Silverstein, Spectral analysis of large dimensional random matrices, Springer Ser. Statist., 2nd ed., Springer, New York, 2010, xvi+551 pp.
- Z. D. Bai, Y. Q. Yin, P. R. Krishnaiah, “On limiting spectral distribution of product of two random matrices when the underlying distribution is isotropic”, J. Multivariate Anal., 19:1 (1986), 189–200
- Zhidong Bai, Wang Zhou, “Large sample covariance matrices without independence structures in columns”, Statist. Sinica, 18:2 (2008), 425–442
- M. Banna, “Limiting spectral distribution of Gram matrices associated with functionals of $beta$-mixing processes”, J. Math. Anal. Appl., 433:1 (2016), 416–433
- M. Banna, F. Merlevède, “Limiting spectral distribution of large sample covariance matrices associated with a class of stationary processes”, J. Theoret. Probab., 28:2 (2015), 745–783
- M. Banna, F. Merlevède, M. Peligrad, “On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries”, Stochastic Process. Appl., 125:7 (2015), 2700–2726
- J. Bryson, R. Vershynin, Hongkai Zhao, “Marchenko–Pastur law with relaxed independence conditions”, Random Matrices Theory Appl., 10:4 (2021), 2150040, 28 pp.
- B. Collins, Jianfeng Yao, Wangjun Yuan, “On spectral distribution of sample covariance matrices from large dimensional and large $k$-fold tensor products”, Electron. J. Probab., 27 (2022), 102, 18 pp.
- R. Couillet, M. Debbah, Random matrix methods for wireless communications, Cambridge Univ. Press, Cambridge, 2011, xxii+539 pp.
- R. Couillet, Zhenyu Liao, Random matrix methods for machine learning, Cambridge Univ. Press, Cambridge, 2022, viii+402 pp.
- A. Dembczak-Kolodziejczyk, A. Lytova, “On the empirical spectral distribution for certain models related to sample covariance matrices with different correlations”, Random Matrices Theory Appl., 11:3 (2022), 2250030, 23 pp.
- E. Dobriban, S. Wager, “High-dimensional asymptotics of prediction: ridge regression and classification”, Ann. Statist., 46:1 (2018), 247–279
- R. B. Dozier, J. W. Silverstein, “On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices”, J. Multivariate Anal., 98:4 (2007), 678–694
- N. El Karoui, “Concentration of measure and spectra of random matrices: applications to correlation matrices, elliptical distributions and beyond”, Ann. Appl. Probab., 19:6 (2009), 2362–2405
- N. El Karoui, “Random matrices and high-dimensional statistics: beyond covariance matrices”, Proceedings of the international congress of mathematicians–Rio de Janeiro 2018, v. 4, Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, 2857–2876
- J. S. Geronimo, T. P. Hill, “Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform”, J. Approx. Theory, 121:1 (2003), 54–60
- V. L. Girko, Theory of stochastic canonical equations, v. I, II, Math. Appl., 535, Kluwer Acad. Publ., Dordrecht, 2001, xxiv+497 pp., xxvi+463 pp.
- V. L. Girko, A. K. Gupta, “Asymptotic behavior of spectral function of empirical covariance matrices”, Random Oper. Stochastic Equations, 2:1 (1994), 43–60
- U. Grenander, J. W. Silverstein, “Spectral analysis of networks with random topologies”, SIAM J. Appl. Math., 32:2 (1977), 499–519
- W. Hachem, P. Loubaton, J. Najim, “The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile”, Ann. Inst. H. Poincare Probab. Statist., 42:6 (2006), 649–670
- W. Hachem, P. Loubaton, J. Najim, “A CLT for information-theoretic statistics of Gram random matrices with a given variance profile”, Ann. Appl. Probab., 18:6 (2008), 2071–2130
- P. Hall, “On the $L^p$ convergence of sums of independent random variables”, Math. Proc. Cambridge Philos. Soc., 82:3 (1977), 439–446
- R. A. Horn, Ch. R. Johnson, Topics in matrix analysis, Corr. reprint of the 1991 original, Cambridge Univ. Press, Cambridge, 1994, viii+607 pp.
- Jun Hui, Guangming Pan, “Limiting spectral distribution for large sample covariance matrices with $m$-dependent elements”, Comm. Statist. Theory Methods, 39:6 (2010), 935–941
- D. Jonsson, “Some limit theorems for the eigenvalues of a sample covariance matrix”, J. Multivariate Anal., 12:1 (1982), 1–38
- Haoyang Liu, A. Aue, D. Paul, “On the Marčenko–Pastur law for linear time series”, Ann. Statist., 43:2 (2015), 675–712
- C. Louart, Zhenyu Liao, R. Couillet, “A random matrix approach to neural networks”, Ann. Appl. Probab., 28:2 (2018), 1190–1248
- A. Lytova, “Central limit theorem for linear eigenvalue statistics for a tensor product version of sample covariance matrices”, J. Theoret. Probab., 31:2 (2018), 1024–1057
- F. Merlevède, C. Peligrad, M. Peligrad, “On the universality of spectral limit for random matrices with martingale differences entries”, Random Matrices Theory Appl., 4:1 (2015), 1550003, 33 pp.
- F. Merlevède, M. Peligrad, “On the empirical spectral distribution for matrices with long memory and independent rows”, Stochastic Process. Appl., 126:9 (2016), 2734–2760
- S. O'Rourke, “A note on the Marchenko–Pastur law for a class of random matrices with dependent entries”, Electron. Commun. Probab., 17 (2012), 28, 13 pp.
- A. Pajor, L. Pastur, “On the limiting empirical measure of eigenvalues of the sum of rank one matrices with log-concave distribution”, Studia Math., 195:1 (2009), 11–29
- L. Pastur, M. Shcherbina, Eigenvalue distribution of large random matrices, Math. Surveys Monogr., 171, Amer. Math. Soc., Providence, RI, 2011, xiv+632 pp.
- D. Paul, A. Aue, “Random matrix theory in statistics: a review”, J. Statist. Plann. Inference, 150 (2014), 1–29
- D. Paul, J. W. Silverstein, “No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix”, J. Multivariate Anal., 100:1 (2009), 37–57
- O. Pfaffel, E. Schlemm, “Eigenvalue distribution of large sample covariance matrices of linear processes”, Probab. Math. Statist., 31:2 (2011), 313–329
- O. Pfaffel, E. Schlemm, “Limiting spectral distribution of a new random matrix model with dependence across rows and columns”, Linear Algebra Appl., 436:9 (2012), 2966–2979
- P. Revesz, “$M$-mixing systems. I”, Acta Math. Acad. Sci. Hungar., 20 (1969), 431–442
- F. Rubio, X. Mestre, “Spectral convergence for a general class of random matrices”, Statist. Probab. Lett., 81:5 (2011), 592–602
- J. W. Silverstein, “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices”, J. Multivariate Anal., 55:2 (1995), 331–339
- J. W. Silverstein, Z. D. Bai, “On the empirical distribution of eigenvalues of a class of large dimensional random matrices”, J. Multivariate Anal., 54:2 (1995), 175–192
- E. E. Tyrtyshnikov, N. L. Zamarashkin, “Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships”, Linear Algebra Appl., 270:1-3 (1998), 15–27
- D. Voiculescu, “Limit laws for random matrices and free products”, Invent. Math., 104:1 (1991), 201–220
- D. Voiculescu, “Lectures on free probability theory”, Lectures on probability theory and statistics (Saint-Flour, 1998), Lecture Notes in Math., 1738, Springer-Verlag, Berlin, 2000, 279–349
- K. W. Wachter, “The strong limits of random matrix spectra for sample matrices of independent elements”, Ann. Probab., 6:1 (1978), 1–18
- K. W. Wachter, “The limiting empirical measure of multiple discriminant ratios”, Ann. Statist., 8:5 (1980), 937–957
- Meng Wei, Guangyu Yang, Lingling Ying, “The limiting spectral distribution for large sample covariance matrices with unbounded $m$-dependent entries”, Comm. Statist. Theory Methods, 45:22 (2016), 6651–6662
- J. Wishart, “The generalised product moment distribution in samples from a normal multivariate population”, Biometrika, 20A:1-2 (1928), 32–52
- Jianfeng Yao, “A note on a Marčenko–Pastur type theorem for time series”, Statist. Probab. Lett., 82:1 (2012), 22–28
- P. Yaskov, “Variance inequalities for quadratic forms with applications”, Math. Methods Statist., 24:4 (2015), 309–319
- P. Yaskov, “A short proof of the Marchenko–Pastur theorem”, C. R. Math. Acad. Sci. Paris, 354:3 (2016), 319–322
- P. Yaskov, “Necessary and sufficient conditions for the Marchenko–Pastur theorem”, Electron. Commun. Probab., 21 (2016), 73, 8 pp.
- P. Yaskov, “LLN for quadratic forms of long memory time series and its applications in random matrix theory”, J. Theoret. Probab., 31:4 (2018), 2032–2055
- P. Yaskov, “Limit of the smallest eigenvalue of a sample covariance matrix for spherical and related distributions”, Recent developments in stochastic methods and applications, ICSM-5 (Moscow, 2020), Springer Proc. Math. Statist., 371, Springer, Cham, 2021, 229–241
- P. Yaskov, “Marchenko–Pastur law for a random tensor model”, Electron. Commun. Probab., 28 (2023), 23, 17 pp.
- P. Yaskov, “A remark on the spectrum of sample covariance matrices from large random tensors”, ALEA Lat. Am. J. Probab. Math. Stat. (to appear)
- Y. Q. Yin, “Limiting spectral distribution for a class of random matrices”, J. Multivariate Anal., 20:1 (1986), 50–68
- Y. Q. Yin, P. R. Krishnaiah, “A limit theorem for the eigenvalues of product of two random matrices”, J. Multivariate Anal., 13:4 (1983), 489–507
- Y. Q. Yin, P. R. Krishnaiah, “Limit theorem for the eigenvalues of the sample covariance matrix when the underlying distribution is isotropic”, Теория вероятн. и ее примен., 30:4 (1985), 810–816
- Wangjun Yuan, “On spectrum of sample covariance matrices from large tensor vectors”, ALEA Lat. Am. J. Probab. Math. Stat., 21:2 (2024), 1527–1545
- Lixin Zhang, Spectral analysis of large dimensional random matrices, Ph.D. thesis, Nat. Univ. of Singapore, 2006
Supplementary files

