Generalized chord diagrams and weight systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper is devoted to a description of the recent progress in understanding the extension of Lie algebra weight systems to permutations. Lie algebra weight systems are functions on chord diagrams arising naturally in Vassiliev's theory of finite-type knot invariants. These functions satisfy certain linear restrictions known as Vassiliev's 4-term relations. Chord diagrams can be interpreted as fixed-point-free involutions in symmetric groups, and an extension of Lie algebra weight systems to arbitrary permutations was aimed at finding an efficient way to compute their values. We show that this extension is of interest on its own, which suggests introducing the notion of weight system on permutations. To this end we define generalized Vassiliev's relations for permutations, which reduce to conventional ones for chord diagrams. We also describe the corresponding Hopf algebra structures on spaces of permutations that match the classical Hopf algebra structure on the space of chord diagrams modulo 4-term relations. Among main results of the paper is an explicit formula for the average value of the universal $\mathfrak{gl}$-weight system on permutations. This formula implies, in particular, that this average value is a tau-function for the Kadomtsev-Petviashvili hierarchy of partial differential equations. Its proof is based on an analysis of a quantum version of the universal $\mathfrak{gl}$-weight system.

About the authors

Maxim Eduardovich Kazarian

International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Russia

Email: kazarian@mccme.ru
ResearcherId: P-8602-2016
Doctor of physico-mathematical sciences, no status

Evgenii Sergeevich Krasil'nikov

International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia

Email: evgeny12@mail.ru

Sergei Konstantinovich Lando

International Laboratory of Cluster Geometry, Moscow, Russia; National Research University "Higher School of Economics" (HSE), Moscow, Russia

Email: lando@mccme.ru; lando@hse.ru
ORCID iD: 0000-0003-3373-3705
Scopus Author ID: 6602320062
ResearcherId: K-4775-2015
Doctor of physico-mathematical sciences

Michael Zalmanovich Shapiro

Michigan State University, East Lansing, MI, USA

Email: mshapiro@math.msu.edu
Candidate of physico-mathematical sciences

Mikhail Romanovich Zaitsev

National Research University "Higher School of Economics" (HSE), Moscow, Russia

Email: mrzaytsev@edu.hse.ru

References

  1. D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472
  2. L. Carlitz, “$q$-Bernoulli numbers and polynomials”, Duke Math. J., 15 (1948), 987–1000
  3. S. Chmutov, S. Duzhin, J. Mostovoy, Introduction to Vassiliev knot invariants, Cambridge Univ. Press, Cambridge, 2012, xvi+504 pp.
  4. S. Chmutov, M. Kazarian, S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp.
  5. D. Gurevich, P. Saponov, “Generalized Harish-Chandra morphism on reflection equation algebras”, J. Geom. Phys., 210 (2025), 105435, 9 pp.
  6. A. P. Isaev, P. Pyatov, “Spectral extension of the quantum group cotangent bundle”, Comm. Math. Phys., 288:3 (2009), 1137–1179
  7. Naihuan Jing, Ming Lui, A. Molev, “The $q$-immanants and higher quantum Capelli identities”, Comm. Math. Phys., 406:5 (2025), 99, 16 pp.
  8. V. F. R. Jones, “Hecke algebra representations of braid groups and link polynomials”, Ann. of Math. (2), 126:2 (1987), 335–388
  9. A.-A. A. Jucys, “Symmetric polynomials and the center of the symmetric group ring”, Rep. Math. Phys., 5:1 (1974), 107–112
  10. M. Kazarian, N. Kodaneva, S. Lando, The universal $mathfrak{gl}$-weight system and the chromatic polynomial, 2024, 21 pp.
  11. M. Kazarian, Zhuoke Yang, Universal polynomial $mathfrak{so}$-weight system, 2024, 15 pp.
  12. T. Kim, J. Choi, B. Lee, C. S. Ryoo, “Some identities on the generalized $q$-Bernoulli numbers and polynomials associated with $q$-Volkenborn integrals”, J. Inequal. Appl., 2010 (2010), 575240, 17 pp.
  13. N. Kodaneva, S. Lando, “Polynomial graph invariants induced from the $mathfrak{gl}$-weight system”, J. Geom. Phys., 210 (2025), 105421, 16 pp.
  14. M. Kontsevich, “Vassiliev's knot invariants”, I. M. Gel'fand seminar, Part 2, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 137–150
  15. S. K. Lando, “On primitive elements in the bialgebra of chord diagrams”, Topics in singularity theory, Amer. Math. Soc. Transl. Ser. 2, 180, Adv. Math. Sci., 34, Amer. Math. Soc., Providence, RI, 1997, 167–174
  16. S. Lando, Zhuoke Yang, Chromatic polynomial and the $mathfrak{so}$-weight system, 2024, 17 pp.
  17. J. W. Milnor, J. C. Moore, “On the structure of Hopf algebras”, Ann. of Math. (2), 81:2 (1965), 211–264
  18. O. Ogievetsky, P. Pyatov, Lecture on Hecke algebras, preprint CPT-2000/P.4076, 2001, 61 pp.
  19. A. Okounkov, “Quantum immanants and higher Capelli identities”, Transform. Groups, 1:1-2 (1996), 99–126
  20. G. I. Olshanskii, “Representations of infinite-dimensional classical groups, limits of enveloping algebras, and Yangians”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 1–66
  21. M. Sato, Y. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Nonlinear partial differential equations in applied science (Tokyo, 1982), North-Holland Math. Stud., 81, Lecture Notes Numer. Appl. Anal., 5, North-Holland Publishing Co., Amsterdam, 1983, 259–271
  22. V. A. Vassiliev, “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, Amer. Math. Soc., Providence, RI, 1990, 23–69
  23. Zhuoke Yang, “On the Lie superalgebra $mathfrak{gl}(m|n)$ weight system”, J. Geom. Phys., 187 (2023), 104808, 11 pp.
  24. Zhuoke Yang, “New approaches to $mathfrak{gl}_N$ weight system”, Изв. РАН. Сер. матем., 87:6 (2023), 150–166
  25. K. Yordzhev, “On the cardinality of a factor set in the symmetric group”, Asian-Eur. J. Math., 7:2 (2014), 1450027, 14 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kazarian M.E., Krasil'nikov E.S., Lando S.K., Shapiro M.Z., Zaitsev M.R.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).