Identification of Gelatinases in Prostate Cancer Cells
- Authors: Akentieva N.P.1, Gizatullin A.R.1, Shushanov S.S.2
-
Affiliations:
- Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
- Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
- Issue: Vol 145, No 1 (2025)
- Pages: 3-10
- Section: Articles
- Submitted: 01.06.2025
- Accepted: 01.06.2025
- Published: 01.06.2025
- URL: https://journal-vniispk.ru/0042-1324/article/view/294670
- DOI: https://doi.org/10.31857/S0042132425010018
- EDN: https://elibrary.ru/DMRDDF
- ID: 294670
Cite item
Full Text
Abstract
Prostate cancer remains one of the most common oncological diseases among men. Gelatinases, such as MMP-13 and MMP-7, play a key role in tumor invasion and metastasis. Prostate-specific antigen (PSA) and metalloproteinases are considered as potential biomarkers and targets for prostate cancer diagnosis and therapy. The study used gelatin zymography to assess gelatinase activity in the PC-3 prostate cancer cell line. The results showed the presence of protein bands corresponding to gelatinase activity in the size range of 20, 28 and 37 kDa, which coincides with the activity of MMP-13, MMP-7 and PSA in PC-3 cells. The results showed the presence of protein bands corresponding to the proteolytic activity of gelatinases in the size range of 20, 28 and 37 kDa, which coincides with the activity of MMP-13, MMP-7 and PSA. Thus, gelatinases MMP-13, MMP-7 and PSA were identified in prostate cancer cells, which can be used as markers of aggressiveness and progression of prostate cancer.
Keywords
About the authors
N. P. Akentieva
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: na_aken@icp.ac.ru
Russian Federation, Chernogolovka, Moscow Region
A. R. Gizatullin
Federal Research Center for Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences
Email: na_aken@icp.ac.ru
Russian Federation, Chernogolovka, Moscow Region
S. S. Shushanov
Blokhin National Medical Research Center of Oncology, Ministry of Health of the Russian Federation
Email: na_aken@icp.ac.ru
Russian Federation, Moscow
References
- Воронкина И.В., Харисов A.M., Блинова М.И. и др. Модель “воздушного пузыря” у мышей и изучение протеолитической активности раневого экссудата // Цитология. 2002. Т. 44 (3). С. 270–276.
- Печерина Т.Б., Барбараш О.Л. Матриксные металлопротеиназы. Клиническая и прогностическая значимость у больных инфарктом миокарда // Фундам. и клин. медицина. 2019. Т. 4 (2). С. 84–94. https://doi.org/10.23946/2500-0764-2019-4-2-84-94
- Attard G., Parker C., Eeles R.A. et al. Prostate cancer // Lancet. 2016. V. 387 (10013). P. 70–82. https://doi.org/10.1016/S0140-6736(14)61947-4
- Bassiouni W., Ali M.A.M., Schulz R. Multifunctional intracellular matrix metalloproteinases: implications in disease // FEBS J. 2021. V. 288 (24). P. 7162–7182. https://doi.org/10.1111/febs.15701
- Balduyck M., Zerimech F., Gouyer V. et al. Specific expression of matrix metalloproteinases 1, 3, 9 and 13 associated with invasiveness of breast cancer cells in vitro // Clin. Exp. Metastasis. 2000. V. 18 (2). P. 171–178. https://doi.org/10.1023/a:1006762425323
- Bonaldi C.M., Azzalis L.A., Junqueira V.B. et al. Plasma levels of E-cadherin and MMP-13 in prostate cancer patients: correlation with PSA, testosterone and pathological parameters // Tumori. 2015. V. 101 (2). P. 185–188. https://doi.org/10.5301/tj.5000237
- Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. 1976. V. 72. P. 248–254. https://doi.org/10.1006/abio.1976.9999
- Christensson A., Björk T., Nilsson O. et al. Serum prostate specific antigen complexed to alpha 1-antichymotrypsin as an indicator of prostate cancer // J. Urol. 1993. V. 150 (1). P. 100–105. https://doi.org/10.1016/s0022-5347(17)35408-3
- Darson M.F., Pacelli A., Roche P. et al. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker // Urology. 1997. V. 49 (6). P. 857–862. https://doi.org/10.1016/S0090-4295(97)00108-8
- Darson M.F., Pacelli A., Roche P. et al. Human kallikrein 2 expression in prostate adenocarcinoma and lymph node metastases // Urology. 1999. V. 53 (5). P. 939–944. https://doi.org/ 10.1016/s0090-4295(98)00637-2
- Decock J., Thirkettle S., Wagstaff L., Edwards D.R. Matrix metalloproteinases: protective roles in cancer // J. Cell. Mol. Med. 2011. V. 15 (6). P. 1254–1265. https://doi.org/10.1111/j.1582-4934.2011.01302.x
- Duffy M.J. Serum tumor markers in breast cancer: are they of clinical value? // Clin. Chem. 2006. V. 52 (3). P. 345–351. https://doi.org/10.1373/clinchem.2005.059832
- Ho H.Y., Chen M.K., Lin C.C. et al. Epiberberine suppresses the metastasis of head and neck squamous cell carcinoma cells by regulating the MMP-13 and JNK pathway // J. Cell. Mol. Med. 2023. V. 27 (23). P. 3796–3804. https://doi.org/10.1111/jcmm.17954
- Kalantari E., Abolhasani M., Roudi R. et al. Co-expression of TLR-9 and MMP-13 is associated with the degree of tumour differentiation in prostate cancer // Int. J. Exp. Pathol. 2019. V. 100 (2). P. 123–132. https://doi.org/10.1111/iep.12314
- Kalluri R., Zeisberg M. Fibroblasts in cancer // Nat. Rev. Cancer. 2006. V. 6 (5). P. 392–401. https://doi.org/10.1038/nrc1877
- Knox J.D., Wolf C., McDaniel K. et al. Matrilysin expression in human prostate carcinoma // Mol. Carcinogen. 1996. V. 15 (1). P. 57–63. https://doi.org/10.1002/(SICI)1098-2744(199601) 15:1<57::AID-MC8>3.0.CO;2-P
- Kudo Y., Iizuka S., Yoshida M. et al. Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis // J. Biol. Chem. 2012. V. 287 (46). P. 38716–38728. https://doi.org/10.1074/jbc.M112.373159
- Lindsey M.L., Escobar G.P., Mukherjee R. et al. Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction // Circulation. 2006. V. 113 (25). P. 2919–2928. https://doi.org/10.1161/CIRCULATIONAHA.106.612960
- Lilja H., Oldbring J., Rannevik G., Laurell C.B. Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen // J. Clin. Invest. 1987. V. 80 (2). P. 281–285. https://doi.org/10.1172/JCI113070
- Luukkaa M., Vihinen P., Kronqvist P. et al. Association between high collagenase-3 expression levels and poor prognosis in patients with head and neck cancer // Head Neck. 2006. V. 28 (3). P. 225–234. https://doi.org/10.1002/hed.20322
- Lynch C.C., Hikosaka A., Acuff H.B. et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL // Cancer Cell. 2005. V. 7 (5). P. 485–496. https://doi.org/10.1016/j.ccr.2005.04.013
- Morgia G., Falsaperla M., Malaponte G. et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer // Urol. Res. 2005. V. 33 (1). P. 44–50. https://doi.org/10.1007/s00240-004-0440-8
- Mott J.D., Werb Z. Regulation of matrix biology by matrix metalloproteinases // Curr. Opin. Cell Biol. 2004. V. 16 (5). P. 558–564. https://doi.org/10.1016/j.ceb.2004.07.010
- Nelson P.S., Clegg N., Arnold H. et al. The program of androgen-responsive genes in neoplastic prostate epithelium // PNAS USA. 2002. V. 99 (18). P. 11890–11895. https://doi.org/10.1073/pnas.182376299
- Oliver G.W., Stettler-Stevenson W.G., Kleiner D.E. Zymography, casein zymography, and reverse zymography; activity proteases and their inhibitors // Prot. Enzym. Tools Targets. 1999. P. 63–76.
- Piskór B.M., Przylipiak A., Dąbrowska E. et al. Matrilysins and stromelysins in pathogenesis and diagnostics of cancers // Cancer Manag. Res. 2020. V. 12. P. 10949–10964. https://doi.org/10.2147/CMAR.S235776
- Piura B., Rabinovich A., Huleihel M. Matrix metalloproteinases and their tissue inhibitors in malignancies of the female genital tract // Harefuah. 2003. V. 142 (11). P. 786–791, 804.
- Salaün M., Peng J., Hensley H.H. et al. MMP-13 in-vivo molecular imaging reveals early expression in lung adenocarcinoma // PLoS One. 2015. V. 10 (7). P. e0132960. https://doi.org/10.1371/journal.pone.0132960
- Sharifi-Zahabi E., Hajizadeh-Sharafabad F., Abdollahzad H. et al. The effect of green tea on prostate specific antigen (PSA): A systematic review and meta-analysis of randomized controlled trials // Complement. Ther. Med. 2021. V. 57. P. 102659. https://doi.org/10.1016/j.ctim.2020.102659
- Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020 // CA: Cancer J. Clin. 2020. V. 70 (1). P. 7–30. https://doi.org/10.3322/caac.21590
- Stephan C., Rittenhouse H.G., Hu X.Y. et al. Prostate-specific antigen (PSA) screening and new biomarkers for prostate cancer (PCa) // EJIFCC. 2014. V. 25 (1). P. 55–78.
- Stetler-Stevenson W.G. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis // Surg. Oncol. Clin. North Am. 2001. V. 10 (2). P. 383–392.
- Surasi D.S.S., Chapin B., Tang C. et al. Imaging and management of prostate cancer // Semin. Ultrasound. CT MR. 2020. V. 41 (2). P. 207–221. https://doi.org/10.1053/j.sult.2020.02.001
- Szarvas T., Becker M., Vom Dorp F. et al. Elevated serum matrix metalloproteinase 7 levels predict poor prognosis after radical prostatectomy // Int. J. Cancer. 2011. V. 128 (6). P. 1486–1492. https://doi.org/10.1002/ijc.25454
- Szklarczyk A., Oyler G., McKay R. et al. Cleavage of neuronal synaptosomal-associated protein of 25 kDa by exogenous matrix metalloproteinase-7 // J. Neurochem. 2007. V. 102 (4). P. 1256–1263. https://doi.org/10.1111/j.1471-4159.2007.04625.x
- Thompson I.M., Pauler D.K., Goodman P.J. et al. Prevalence of prostate cancer among men with a prostate-specific antigen level ≤ 4.0 ng per milliliter // N. Engl. J. Med. 2004. V. 350 (22). P. 2239–2246. https://doi.org/10.1056/NEJMoa031918
- Toth M., Sohail A., Fridman R. Assessment of gelatinases (MMP-2 and MMP-9) by gelatin zymography // Meth. Mol. Biol. 2012. V. 878. Р. 121–135. https://doi.org/10.1007/978-1-61779-854-2_8
- Turpeenniemi-Hujanen T. Gelatinases (MMP-2 and-9) and their natural inhibitors as prognostic indicators in solid cancers // Biochimie. 2005. V. 87 (3–4). P. 287–297. https://doi.org/10.1016/j.biochi.2005.01.014
- Vihinen P., Kähäri V.M. Matrix metalloproteinases in cancer: prognostic markers and therapeutic targets // Int. J. Cancer. 2002. V. 99 (2). P. 157–166. https://doi.org/10.1002/ijc.10329
- Wang S.W., Tai H.C., Tang C.H. et al. Melatonin impedes prostate cancer metastasis by suppressing MMP-13 expression // J. Cell Physiol. 2021. V. 236 (5). P. 3979–3990. https://doi.org/10.1002/jcp.30150
- Watt K.W., Lee P.J., M’Timkulu T. et al. Human prostate-specific antigen: Structural and functional similarity with serine proteases // PNAS USA. 1986. V. 83 (10). P. 3166–3170. https://doi.org/10.1073/pnas.83.10.3166
Supplementary files
