“Fast” Solution of the Three-Dimensional Inverse Problem of Quasi-Static Elastography with the Help of the Small Parameter Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider direct and inverse problems of three-dimensional quasi-static elastography underlying a cancer diagnosis method. They are based on a model of a tissue exposed to surface compression with deformations obeying linear elasticity laws. The arising three-dimensional displacements of the tissue are described by a boundary value problem for partial differential equations with coefficients determined by a variable Young’s modulus and a constant Poisson ratio. The problem contains a small parameter, so it can be solved using the theory of regular perturbations of partial differential equations. This is the direct problem. The inverse problem is to find the Young modulus distribution from given tissue displacements. A significant increase in Young’s modulus within a certain tissue domain suggests possible malignancy. Under certain assumptions, simple formulas for solving both direct and inverse problems of three-dimensional quasi-static elastography are derived. Three-dimensional inverse test problems are solved numerically with the help of the proposed formulas. The resulting approximate solutions agree fairly well with the exact model solutions. The computations based on the formulas require only several tens of milliseconds on a moderate-performance personal computer for sufficiently fine grids, so the proposed small-parameter approach can be used in real-time cancer diagnosis.

About the authors

A. S. Leonov

National Research Nuclear University “MEPhI”

Email: asleonov@mephi.ru
115409, Moscow, Russia

N. N. Nefedov

Faculty of Physics, Lomonosov Moscow State University

Email: nefedov@phys.msu.ru
119992, Moscow, Russia

A. N. Sharov

Faculty of Physics, Lomonosov Moscow State University

Email: scharov.aleksandr@physics.msu.ru
119992, Moscow, Russia

A. G. Yagola

Faculty of Physics, Lomonosov Moscow State University

Author for correspondence.
Email: yagola@physics.msu.ru
119992, Moscow, Russia

References

  1. Gao L., Parker K., Lerner R., et al. Imaging of the elastic properties of tissue – a review // Ultrasound Med. Biol. 1996. V. 22. P. 959–977.
  2. Ophir J., Alam S., Garra B., et al. Elastography: ultrasonic estimation and imaging of the elastic properties of tissues // Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 1999. V. 213. P. 203–233.
  3. Greenleaf J.F., Fatemi M., Insana M. Selected methods for imaging elastic properties of biological tissues // A-nnu. Rev. Biomed. Eng. 2003. V. 5. P. 57–78.
  4. Parker K.J., Taylor L.S., Gracewski S., et al. A unified view of imaging the elastic properties of tissue // J. Acoust. Soc. Am. 2005. V. 117. P. 2705–2712.
  5. Doyley M. Model-based elastography: a survey of approaches to the inverse elasticity problem // Phys Med Biol. 2012. V. 57. P. R35–R73.
  6. Гурбатов С.Н., Демин И.Ю., Прончатов-Рубцов Н.В. Ультразвуковая эластография: аналитическое описание различных режимов и технологий, физическое и численное моделирование сдвиговых характеристик мягких биологических тканей: учебно-методическое пособие. Нижний Новгород: Нижегородский гос. ун-т, 2015.
  7. Oberai A.A., Gokhale N.H., Feijoo G.R. Solution of inverse problems in elasticity imaging using the adjoint method // Inverse Probl. 2003. V. 19. P. 297–313.
  8. Richards M., Barbone P., Oberai A. Quantitative three-dimensional elasticity imaging from quasi-static deformation: a phantom study // Phys. Med. Biol. 2009. V. 54. P. 757–779.
  9. Leonov A.S., Sharov A.N., Yagola A.G. A posteriori error estimates for numerical solutions to inverse problems of elastography // Inverse Probl. Sci. Eng. 2017. V. 25. P. 114–128.
  10. Leonov A.S., Sharov A.N., Yagola A.G. Solution of the inverse elastography problen for parametric classes of inclusions with a posteriori error estimate // J. Inverse Ill-Posed Probl. 2017. V. 26. P. 1–7.
  11. Leonov A.S., Sharov A.N., Yagola A.G. Solution of the three-dimensional inverse elastography problem for parametric classes of inclusions // Inverse Probl. Sci. Eng. 2021. V. 29. № 8. P. 1055–1069.
  12. Rychagov M., Khaled W., Reichling S., et al. Numerical modeling and experimental investigation of biomedical elastographic problem by using plane strain state model // Fortsch. Der Akustik. 2003. V. 29. P. 586–589.
  13. Leonov A.S., Sharov A.N., Yagola A.G. Solution of the three-dimensional inverse elastography problem for parametric classes of inclusions, Inverse Problems in Science and Engineering. 2021. V.29. Issue 8. P. 1055–1069.
  14. Леонов А.С., Нефедов Н.Н., Шаров А.Н., Ягола А.Г. Решение двумерной обратной задачи квазистатической эластографии с помощью метода малого параметра Ж. вычисл. матем. и матем. физ. 2022. Т. 62. № 5. С. 854–860.
  15. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973.
  16. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения. М.: Наука, 1980.
  17. Треногин В.А. Функциональный анализ. М.: Наука, 1980.
  18. Тихонов А.Н., Гончарский А.В., Степанов В.В., Ягола А.Г. Численные методы решения некорректных задач. М.: Наука, 1990.
  19. Леонов А.С. Решение некорректно поставленных обратных задач. Очерк теории, практические алгоритмы и демонстрации в МАТЛАБ. М.: Либроком, 2009.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (589KB)
3.

Download (340KB)
4.

Download (831KB)
5.

Download (145KB)
6.

Download (193KB)
7.

Download (438KB)
8.

Download (813KB)
9.

Download (372KB)
10.

Download (241KB)

Copyright (c) 2023 А.С. Леонов, Н.Н. Нефедов, А.Н. Шаров, А.Г. Ягола

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».