Метод численного решения нестационарного уравнения Шрёдингера десятого порядка точности

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Представлен метод численного решения нестационарного уравнения Шрёдингера десятого порядка точности, основанный на аппроксимации оператора эволюции формулой произведения. Обсуждается проблема уменьшения числа операторных экспонент в итоговой формуле за счет оптимизации их последовательности. На основе идеи, предложенной Йошида, построены два алгоритма десятого порядка точности для аппроксимации оператора эволюции. Численные тесты продемонстрировали устойчивость этих алгоритмов и их порядок точности. Метод, использованный в статье, позволил значительно уменьшить количество экспоненциальных множителей в схеме по сравнению с известной формулой Ли–Троттера–Сузуки. Библ. 25. Фиг. 2. Табл. 2.

About the authors

М. А. Захаров

Объединенный институт ядерных исследований

Author for correspondence.
Email: zakharovmax@jinr.ru
Russian Federation, 141980 Дубна, М.о., ул. Жолио-Кюри, 6

References

  1. Marchuk G. I. Partial Differential Equations: II SYNSPADE-1970. New York: Academic, 1971.
  2. Samarskii A. A. Teoriya raznostnykh skhem (The Theory of Difference Schemes). Moscow: Nauka, 1977.
  3. Strang G., Fix G. An Analysis of the Finite Element Method. Englewood Cliffs: Prentice-Hall, 1973.
  4. Bathe K. J. Finite Element Procedures in Engineering Analysis. New York: Englewood Cliffs, Prentice Hall, 1982.
  5. Magnus W. On the Exponential solution of differential equations for a linear operator // Commun. Pure Appl. Math. 1954. V. 7. P. 649.
  6. Wilcox R. M. Exponential operators and parameter differentiation in quantum physics // J. Math. Phys. 1967. V. 8. P. 962.
  7. Blanes S., Casas F., Ros J. Improved high order integrators based on the Magnus expansion // BIT Numer. Math. 2000. V. 40. P. 434.
  8. Chuluunbaatar O., Derbov V. L., Galtbayar A., Gusev A. A., Kaschiev M. S., Vinitsky S. I., Zhanlav T. Explicit Magnus expansions for solving the time-dependent Schrödinger equation // J. Phys. A: Math. Theor. 2008. V. 41. P. 295203.
  9. Yoshida H. Construction of higher order symplectic integrators // Phys. Lett. A. 1990. V. 150. P. 262.
  10. Suzuki M. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations // Phys. Lett. A. 1990. V. 146. № 6. P. 319.
  11. Chin S. A., Chen C. R. Gradient symplectic algorithms for solving the Schrödinger equation with time-dependent potentials // J. Chem. Phys. 2002. V. 117. P. 1409.
  12. McLachlan R. I. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition // SIAM J. Sci. Comput. 1995. V. 16. P. 1.
  13. McLachlan R. I. Families of High-Order Composition Methods // Numer. Alg. 2002. V. 31. P. 233.
  14. Blanes S. High order numerical integrators for differential equations using composition and processing of low order methods // Appl. Numer. Math. 2001. V. 37. P. 289.
  15. Blanes S., Casas F., Ros J. Symplection integration with processing: A general study // SIAM J. Sci. Comput. 1999. V. 21. P. 711.
  16. Zakharov M. A., Frank A. I., Kulin G. V., Goryunov S. V. Interaction of Ultracold Neutrons with a Neutron Interference Filter Oscillating in Space // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 6.
  17. Zakharov M. A., Frank A. I., Kulin G. V. Reflection of neutrons from a resonant potential structure oscillating in space // Phys. Lett. A. 2021. V. 420. P. 127748.
  18. Frigo M., Johnson S. G. The Design and Implementation of FFTW3 // Proc. IEEE. 2005. V. 93. P. 216.
  19. Suzuki M. General Decomposition Theory of Ordered Exponentials // Proc. Japan Acad. B. 1993. V. 69. P. 161.
  20. Trotter H. On the product of semi-groups of operators // Proc. Am. Math. Soc. 1959. V. 10. P. 545.
  21. Feit M. D., Jr. Fleck J. A., Steiger A. Solution of the Schrödinger equation by a spectral method // J. Comp. Phys. 1982. V. 47. P. 412.
  22. Wiebe N., Berry D., Høyer P., Sanders B. Higher order decompositions of ordered operator exponentials // J. Phys. A: Math. Theor. 2010. V. 43. P. 065203.
  23. Casas F., Murua A. An efficient algorithm for computing the Baker–Campbell–Hausdorff series and some of its applications // J. Math. Phys. 2009. V. 50. P. 033513.
  24. Bakhvalov N. S. Numerical methods, Analysis, Algebra, Ordinary Differential Equations. MIR Publ., 1977.
  25. Puzynin I. V., Selin A. V., Vinitsky S. I. A high-order accuracy method for numerical solving of the time-dependent Schrödinger equation// Comput. Phys. Commun. 1999. V. 123. P. 1.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Applications
Download (373KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».