APPLICATION OF INTERVAL SLOPES IN NONSMOOTH ONE-DIMENSIONAL OPTIMIZATION PROBLEMS
- Authors: Posypkin M.A.1,2, Sidnev D.A.3
-
Affiliations:
- Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences
- Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
- National Research University of Electronic Technology (MIET)
- Issue: Vol 65, No 3 (2025)
- Pages: 301-324
- Section: Optimal control
- URL: https://journal-vniispk.ru/0044-4669/article/view/293541
- DOI: https://doi.org/10.31857/S0044466925030068
- EDN: https://elibrary.ru/HSLYRK
- ID: 293541
Cite item
Abstract
About the authors
M. A. Posypkin
Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences; Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University
Email: mposypkin@frccsc.ru
Moscow, 119333 Russia; Moscow, 119991 Russia
D. A. Sidnev
National Research University of Electronic Technology (MIET)
Email: sidnew2001@gmail.com
Zelenograd, Moscow, 124498 Russia
References
- Johnson D.E. Introduction to filter theory. Prentice Hall, 1976.
- Zilinskas A. Optimization of one-dimensional multimodal functions // J. Royal Statistic. Soc., Ser. C (Applied Statistics). 1978. V. 27. № 3.
- Kvasov D.E., Menniti D., Pinnarelli A., et al. Tuning fuzzy power-system stabilizers in multi-machine systems by global optimization algorithms based on efficient domain partitions // Electric Power Syst. Res. 2008. V. 78. № 7. P. 1217–1229.
- Bedrosian D., Vlach J. Time-domain analysis of networks with internally controlled switches // IEEE Transact. on Circuits and Systems I: Fundament. Theory and Appl. 1992. V. 39. № 3. P. 199–212.
- Femia N., Tucci V. On the modeling of PWM converters for large signal analysis in discontinuous conduction mode // IEEE Transact. on Power Electronics. 1994. V. 9. № 5. P. 487–496.
- Fasano G., Pint’er J.D. Efficient piecewise linearization for a class of nonconvex optimization problems: comparative results and extensions // Model. and Optimizat.: Theory and Appl.: MOPTA, Bethlehem, PA, USA, August 2017, Selected Contributions / Springer. 2019. P. 39–56.
- Lassere J.B. Connecting optimization with spectral analysis of tridiagonal matrices // Math. Program. 2020. https://doi.org/10.1007/s10107-020-01549-3.
- Jensen P.A., Bard J.F., Jensen P. Operations research models and methods. John Wiley & Sons, 2003.
- Pint’er J. Extended univariate algorithms for n-dimensional global optimization // Computing. 1986. V. 36. № 1–2. P. 91–103.
- Strongin R.G., Sergeyev Y.D. Global optimization with non-convex constraints: Sequential and parallel algorithms. Springer Science & Business Media, 2013. V. 45.
- Gergel V., Grishagin V., Gergel A. Adaptive nested optimization scheme for multidimensional global search // J. Global Optimizat. 2016. V. 66. P. 35–51.
- Sergeyev Y.D., Nasso M.C., Lera D. Numerical methods using two different approximations of space-filling curves for black-box global optimization // J. Global Optimizat. 2024. V. 88. № 3. P. 707–722.
- Calvin J.M., Chen Y., Zilinskas A. An adaptive univariate global optimization algorithm and its convergence rate for twice continuously differentiable functions // J. Optimizat. Theory and Appl. 2012. V. 155. P. 628–636.
- Sergeyev Y.D., Candelieri A., Kvasov D.E., Perego R. Safe global optimization of expensive noisy black-box functions in the δLipschitz framework // Soft Comput. 2020. V. 24. № 23. P. 17715–17735.
- Posypkin M., Usov A., Khamisov O. Piecewise linear bounding functions in univariate global optimization // Soft Comput. 2020. V. 24. P. 17631–17647.
- Posypkin M., Khamisov O. Automatic Convexity Deduction for Efficient Function’s Range Bounding // Mathematics. 2021. V. 9. № 2. P. 134.
- Sergeyev Y.D., Nasso M.C., Mukhametzhanov M.S., Kvasov D.E. Novel local tuning techniques for speeding up onedimensional algorithms in expensive global optimization using Lipschitz derivatives // J. Comput. and Appl. Math. 2021. V. 383. P. 113134.
- Posypkin M.A., Sergeyev Y.D. Efficient smooth minorants for global optimization of univariate functions with the first derivative satisfying the interval Lipschitz condition // J. Global Optimizat. 2022. P. 1–29.
- Moore R.E., Kearfott R.B., Cloud M.J. Introduction to interval analysis/Ramon E // Moore, R. Baker Kearfott, Michael J. Cloud. Philadelphia, 2009.
- Шарый С.П. Конечномерный интервальный анализ. Новосибирск: ИВТ СО РАН, 2022.
- Neumaier A. Interval methods for systems of equations. Cambridge Univer. Press, 1990.
- Хансен Э., Уолстер Дж.У. Глобальная оптимизация с помощью методов интервального анализа / Ed. by Шарой, С.П. 2-е изд., перевод с англ. М., Ижевск: Ин-т компьют. исслед.: R&C Dynamics, 2012.
- Ratschek H., Rokne J. New computer methods for global optimization. Halsted Press, 1988.
- Kearfott R.B. Rigorous global search: continuous problems. Springer Science & Business Media, 2013. V. 13.
- Баженов А.Н., Жилин С.И., Кумков С.И., Шарый С.П. Обработка и анализ интервальных данных. М.: НИЦ “Регулярная и хаотическая динамика”, 2024.
- Jafarpour S., Harapanahalli A., Coogan S. Efficient interaction-aware interval analysis of neural network feedback loops // IEEE Transactions on Automatic Control. 2024.
- A branch and prune algorithm for the computation of generalized aspects of parallel robots / Caro S., Chablat D., Goldsztejn A. et al. // Artificial Intelligence. 2014. V. 211. P. 34–50. URL: https://www.sciencedirect.com/science/article/pii/S0004370214000125.
- Евтушенко Ю.Г., Посыпкин М.А. Метод неравномерных покрытий для решения задач многокритериальной оптимизации с гарантированной точностью // Ж. вычисл. матем. и матем. физ. 2013. Т. 53. № 2. С. 209–224.
- Kvasov, D., Sergeev, Y. et al. Lipschitz expensive global optimization // Encyclopedia of Optimization. Springer, 2023.
- Stripinis L., Paulavicius R. Lipschitz-inspired HALRECT algorithm for derivative-free global optimization // J. of Global Optimization. 2024. V. 88. № 1. P. 139–169.
- Евтушенко Ю.Г. Численный метод поиска глобального экстремума функций (перебор на неравномерной сетке) // Ж. вычисл. матем. и матем. физ. 1971. Т. 11. № 6. С. 1390–1403.
- Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
- Ratz D. A nonsmooth global optimization technique using slopes: the one-dimensional case // J. of Global Optimization. 1999. V. 14. P. 365–393.
- Ratz D. An Optimized Interval Slope Arithmetic and its Application // Inst. fur Angewandte Mathematik. 1996.
- Kearfott R.B., Nakao M., Neumaier A. и др. Standardized notation in interval analysis // Вычисл. технологии. 2010. Т. 15. № 1. С. 7–13.
- Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. 1987.
- Ильин В.А., Садовничий В.А., Сендов Бл.Х. Математического анализ: Начальный курс. М.: МГУ, 1985.
- Рокафеллар Р. Выпуклый анализ. М.: МИР, 1973.
- Skelboe Stig. Computation of rational interval functions // BIT Numerical Mathematics. 1974. V. 14. № 1. P. 87–95.
- Grant M., Boyd S., Ye Y. Disciplined convex programming. London: Springer, 2006.
Supplementary files
