The Role of RIG-I-Like Receptors in the Activation of Innate Immune in Tuberculosis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Tuberculosis still claims over a million lives every year. The infection process can be regarded as an imbalance between the immune response and Mycobacterium tuberculosis growth. To successfully survive in an infected organism, M. tuberculosis must overcome the mechanisms of innate immunity, including those aimed at recognition of pathogen nucleic acids. RIG-I-like receptors (RLRs) is a system of intracellular sensors of foreign RNA, which is involved in the recognition of viruses and bacterial pathogens. RIG-I, MDA5, and LGP2 receptors interact directly with RNA in the cell cytoplasm and trigger a cascade of interactions leading to the synthesis of type I interferons and pro-inflammatory cytokines. To date, it has been proven that RLR activation during tuberculosis is among the most important components of innate immunity. Their role in the activation of type I interferons is undoubted, however, can be not only protective, but also detrimental. The review considers the latest data on the RLRs functioning in M. tuberculosis infection.

About the authors

Y. V. Skvortsova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS

Author for correspondence.
Email: ju.skvortsova@gmail.com
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

O. S. Bychenko

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: ju.skvortsova@gmail.com
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

T. L. Azhikina

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS

Email: ju.skvortsova@gmail.com
Russia, 117997, Moscow, ul. Miklukho-Maklaya 16/10

References

  1. Yamashiro L.H., Oliveira S.C., Báfica A. // Microbes Infect. 2014. V. 16. P. 991–997. https://doi.org/10.1016/j.micinf.2014.09.006
  2. Batool M., Kim M.S., Choi S. // Med. Res. Rev. 2022. V. 42. P. 399–425. https://doi.org/10.1002/med.21845
  3. Chattopadhyay S., Sen G.C. // J. Interferon Cytokine Res. 2014. V. 34. P. 427– 436. https://doi.org/10.1089/jir.2014.0034
  4. Liu H.M. // IUBMB Life. 2021. V. 74. P. 180–189. https://doi.org/10.1002/iub.2551
  5. Meylan E., Tschopp J., Karin M. // Nature. 2006. V. 442. P. 39–44. https://doi.org/10.1038/nature04946
  6. Martínez I., Oliveros J.C., Cuesta I., de la Barrera J., Ausina V., Casals C., de Lorenzo A., García E., García-Fojeda B., Garmendia J. // Front. Microbiol. 2017. V. 8. P. 276. https://doi.org/10.3389/fmicb.2017.00276
  7. Platnich J.M., Muruve D.A. // Arch. Biochem. Biophys. 2019. V. 670. P. 4–14. https://doi.org/10.1016/j.abb.2019.02.008
  8. Semple S.L., Vo N.T., Poynter S.J., Li M., Heath D.D., DeWitte-Orr S.J., Dixon B. // Dev. Comp. Immunol. 2018. V. 89. P. 93–101. https://doi.org/10.1016/j.dci.2018.08.010
  9. Mehrbod P., Ande S.R., Alizadeh J., Rahimizadeh S., Shariati A., Malek H., Hashemi M., Glover K.K., Sher A.A., Coombs K.M. // Virulence. 2019. V. 10. P. 376–413. https://doi.org/10.1080/21505594.2019.1605803
  10. Bruns A.M., Pollpeter D., Hadizadeh N., Myong S., Marko J.F., Horvath C.M. // J. Biol. Chem. 2013. V. 288. P. 938–946. https://doi.org/10.1074/jbc.M112.424416
  11. Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., Yamaguchi O., Otsu K., Tsujimura T., Koh C.S., Reis e Sousa C., Matsuura Y., Fujita T., Akira S. // Nature. 2006. V. 441. P. 101–105. https://doi.org/nature04734
  12. Loo Y.M., Fornek J., Crochet N., Bajwa G., Perwitasari O., Martinez-Sobrido L., Akira S., Gill M.A., Garcia-Sastre A., Katze M.G., Gale M., Jr. // J. Virol. 2008. V. 82. P. 335–345. https://doi.org/JVI.01080-07
  13. Goubau D., Schlee M., Deddouche S., Pruijssers A.J., Zillinger T., Goldeck M., Schuberth C., Van der Veen A.G., Fujimura T., Rehwinkel J., Iskarpatyoti J.A., Barchet W., Ludwig J., Dermody T.S., Hartmann G., Reis e Sousa C. // Nature. 2014. V. 514. P. 372–375. https://doi.org/10.1038/nature13590
  14. Kowalinski E., Lunardi T., McCarthy A.A., Louber J., Brunel J., Grigorov B., Gerlier D., Cusack S. // Cell. 2011. V. 147. P. 423–435. https://doi.org/10.1016/j.cell.2011.09.039
  15. Chiu Y.H., Macmillan J.B., Chen Z.J. // Cell. 2009. V. 138. P. 576–591. https://doi.org/10.1016/j.cell.2009.06.015
  16. Malathi K., Dong B., Gale M., Jr., Silverman R.H. // Nature. 2007. V. 448. P. 816–819. https://doi.org/nature06042
  17. Schlee M. // Immunobiology. 2013. V. 218. P. 1322–1335. https://doi.org/10.1016/j.imbio.2013.06.007
  18. Zust R., Cervantes-Barragan L., Habjan M., Maier R., Neuman B.W., Ziebuhr J., Szretter K.J., Baker S.C., Barchet W., Diamond M.S., Siddell S.G., Ludewig B., Thiel V. // Nat. Immunol. 2011. V. 12. P. 137–143. https://doi.org/10.1038/ni.1979
  19. Linehan M.M., Dickey T.H., Molinari E.S., Fitzgerald M.E., Potapova O., Iwasaki A., Pyle A.M. // Sci. Adv. 2018. V. 4. P. e1701854. https://doi.org//10.1126/sciadv.1701854
  20. Ren X., Linehan M.M., Iwasaki A., Pyle A.M. // Cell Rep. 2019. V. 26. P. 2019–2027. https://doi.org/10.1016/j.celreP.2019.01.107
  21. Peisley A., Wu B., Yao H., Walz T., Hur S. // Mol. Cell. 2013. V. 51. P. 573–583. https://doi.org/10.1016/j.molcel.2013.07.024
  22. Peisley A., Wu B., Xu H., Chen Z.J., Hur S. // Nature. 2014. V. 509. P. 110–114. https://doi.org/10.1038/nature13140
  23. Pichlmair A., Schulz O., Tan C.P., Rehwinkel J., Kato H., Takeuchi O., Akira S., Way M., Schiavo G., Reis e Sousa C. // J. Virol. 2009. V. 83. P. 10761–10769. https://doi.org/10.1128/JVI.00770-09
  24. Kato H., Takeuchi O., Mikamo-Satoh E., Hirai R., Kawai T., Matsushita K., Hiiragi A., Dermody T.S., Fujita T., Akira S. // J. Exp. Med. 2008. V. 205. P. 1601–1610. https://doi.org/10.1084/jem.20080091
  25. Berke I.C., Modis Y. // EMBO J. 2012. V. 31. P. 1714–1726. https://doi.org/10.1038/emboj.2012.19
  26. Peisley A., Lin C., Wu B., Orme-Johnson M., Liu M., Walz T., Hur S. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 21010–21015. https://doi.org/10.1073/pnas.1113651108
  27. Wu B., Peisley A., Richards C., Yao H., Zeng X., Lin C., Chu F., Walz T., Hur S. // Cell. 2013. V. 152. P. 276–289. https://doi.org/10.1016/j.cell.2012.11.048
  28. Huang Y.H., Liu X.Y., Du X.X., Jiang Z.F., Su X.D. // Nat. Struct. Mol. Biol. 2012. V. 19. P. 728–730. https://doi.org/10.1038/nsmb.2333
  29. Manivannan P., Siddiqui M.A., Malathi K. // J. Virol. 2020. V. 94. P. e00205-20. https://doi.org/10.1128/JVI.00205-20
  30. Luthra P., Sun D., Silverman R.H., He B. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 2118–2123. https://doi.org/10.1073/pnas.1012409108
  31. Chiang J.J., Davis M.E., Gack M.U. // Cytokine Growth Factor Rev. 2014. V. 25. P. 491–505. https://doi.org/10.1016/j.cytogfr.2014.06.005
  32. Hou F., Sun L., Zheng H., Skaug B., Jiang Q.X., Chen Z.J. // Cell. 2011. V. 146. P. 448–461. https://doi.org/10.1016/j.cell.2011.06.041
  33. Liu Y., Olagnier D., Lin R. // Front. Immunol. 2016. V. 7. P. 662. https://doi.org/10.3389/fimmu.2016.00662
  34. Panne D. // Curr. Opin. Struct. Biol. 2008. V. 18. P. 236–242. https://doi.org/10.1016/j.sbi.2007.12.002
  35. Monroe K.M., McWhirter S.M., Vance R.E. // PLoS Pathog. 2009. V. 5. P. e1000665. https://doi.org/10.1371/journal.ppat.1000665
  36. Abdullah Z., Schlee M., Roth S., Mraheil M.A., Barchet W., Bottcher J., Hain T., Geiger S., Hayakawa Y., Fritz J.H., Civril F., Hopfner K.P., Kurts C., Ruland J., Hartmann G., Chakraborty T., Knolle P.A. // EMBO J. 2012. V. 31. P. 4153–4164. https://doi.org/10.1038/emboj.2012.274
  37. Rad R., Ballhorn W., Voland P., Eisenacher K., Mages J., Rad L., Ferstl R., Lang R., Wagner H., Schmid R.M., Bauer S., Prinz C., Kirschning C.J., Krug A. // Gastroenterology. 2009. V. 136. P. 2247–2257. https://doi.org/10.1053/j.gastro.2009.02.066
  38. Manzanillo P.S., Shiloh M.U., Portnoy D.A., Cox J.S. // Cell Host Microbe. 2012. V. 11. P. 469–480. https://doi.org/10.1016/j.chom.2012.03.007
  39. Andreu N., Phelan J., de Sessions P.F., Cliff J.M., Clark T.G., Hibberd M.L. // Sci. Rep. 2017. V. 7. P. 42225. https://doi.org/10.1038/srep42225
  40. Ranjbar S., Haridas V., Nambu A., Jasenosky L.D., Sadhukhan S., Ebert T.S., Hornung V., Cassell G.H., Falvo J.V., Goldfeld A.E. // iScience. 2019. V. 22. P. 299–313. https://doi.org/10.1016/j.isci.2019.11.001
  41. Ivashkiv L.B., Donlin L.T. // Nat. Rev. Immunol. 2014. V. 14. P. 36–49. https://doi.org/10.1038/nri3581
  42. Hertzog P.J., Williams B.R. // Cytokine Growth Factor Rev. 2013. V. 24. P. 217–225. https://doi.org/10.1016/j.cytogfr.2013.04.002
  43. Crouse J., Kalinke U., Oxenius A. // Nat. Rev. Immunol. 2015. V. 15. P. 231–242. https://doi.org/10.1038/nri3806
  44. Qiu H., Fan Y., Joyee A.G., Wang S., Han X., Bai H., Jiao L., Van Rooijen N., Yang X. // J. Immunol. 2008. V. 181. P. 2092–2102. https://doi.org/10.4049/jimmunol.181.3.2092
  45. Auerbuch V., Brockstedt D.G., Meyer-Morse N., O’Riordan M., Portnoy D.A. // J. Exp. Med. 2004. V. 200. P. 527–533. https://doi.org/10.1084/jem.20040976
  46. Opitz B., Vinzing M., van Laak V., Schmeck B., Heine G., Gunther S., Preissner R., Slevogt H., N’Guessan P.D., Eitel J., Goldmann T., Flieger A., Suttorp N., Hippenstiel S. // J. Biol. Chem. 2006. V. 281. P. 36173–36179. https://doi.org/10.1074/jbc.M604638200
  47. Robinson N., McComb S., Mulligan R., Dudani R., Krishnan L., Sad S. // Nat. Immunol. 2012. V. 13. P. 954–962. https://doi.org/10.1038/ni.2397
  48. Kaufmann S.H., Dorhoi A. // Curr. Opin. Immunol. 2013. V. 25. P. 441–449. https://doi.org/10.1016/j.coi.2013.05.005
  49. Moreira-Teixeira L., Mayer-Barber K., Sher A., O’Garra A. // J. Exp. Med. 2018. V. 215. P. 1273–1285. https://doi.org/10.1084/jem.20180325
  50. Manca C., Tsenova L., Freeman S., Barczak A.K., Tovey M., Murray P.J., Barry C., Kaplan G. // J. Interferon Cytokine Res. 2005. V. 25. P. 694–701. https://doi.org/10.1089/jir.2005.25.694
  51. Mayer-Barber K.D., Andrade B.B., Oland S.D., Amaral E.P., Barber D.L., Gonzales J., Derrick S.C., Shi R., Kumar N.P., Wei W., Yuan X., Zhang G., Cai Y., Babu S., Catalfamo M., Salazar A.M., Via L.E., Barry C.E., 3rd, Sher A. // Nature. 2014. V. 511. P. 99–103. https://doi.org/10.1038/nature13489
  52. Robinson C.M., Jung J.Y., Nau G.J. // Cytokine. 2012. V. 60. P. 233–241. https://doi.org/10.1016/j.cyto.2012.06.012
  53. Stanley S.A., Johndrow J.E., Manzanillo P., Cox J.S. // J. Immunol. 2007. V. 178. P. 3143–3152. https://doi.org/10.4049/jimmunol.178.5.3143
  54. Teles R.M., Graeber T.G., Krutzik S.R., Montoya D., Schenk M., Lee D.J., Komisopoulou E., Kelly-Scumpia K., Chun R., Iyer S.S., Sarno E.N., Rea T.H., Hewison M., Adams J.S., Popper S.J., Relman D.A., Stenger S., Bloom B.R., Cheng G., Modlin R.L. // Science. 2013. V. 339. P. 1448–1453. https://doi.org/10.1126/science.1233665
  55. Dorhoi A., Yeremeev V., Nouailles G., Weiner J., 3rd, Jorg S., Heinemann E., Oberbeck-Muller D., Knaul J.K., Vogelzang A., Reece S.T., Hahnke K., Mollenkopf H.J., Brinkmann V., Kaufmann S.H. // Eur. J. Immunol. 2014. V. 44. P. 2380–2393. https://doi.org/10.1002/eji.201344219
  56. Moreira-Teixeira L., Stimpson P.J., Stavropoulos E., Hadebe S., Chakravarty P., Ioannou M., Aramburu I.V., Herbert E., Priestnall S.L., Suarez-Bonnet A., Sousa J., Fonseca K.L., Wang Q., Vashakidze S., Rodriguez-Martinez P., Vilaplana C., Saraiva M., Papayannopoulos V., O’Garra A. // Nat. Commun. 2020. V. 11. P. 5566. https://doi.org/10.1038/s41467-020-19412-6
  57. Wiens K.E., Ernst J.D. // PLoS Pathog. 2016. V. 12. P. e1005809. https://doi.org/10.1371/journal.ppat.1005809
  58. Manca C., Tsenova L., Bergtold A., Freeman S., Tovey M., Musser J.M., Barry C.E., 3rd, Freedman V.H., Kaplan G. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 5752–5757. https://doi.org/10.1073/pnas.091096998
  59. Berry M.P., Graham C.M., McNab F.W., Xu Z., Bloch S.A., Oni T., Wilkinson K.A., Banchereau R., Skinner J., Wilkinson R.J., Quinn C., Blankenship D., Dhawan R., Cush J.J., Mejias A., Ramilo O., Kon O.M., Pascual V., Banchereau J., Chaussabel D., O’Garra A. // Nature. 2010. V. 466. P. 973–977. https://doi.org/10.1038/nature09247
  60. Zak D.E., Penn-Nicholson A., Scriba T.J., Thompson E., Suliman S., Amon L.M., Mahomed H., Erasmus M., Whatney W., Hussey G.D., Abrahams D., Kafaar F., Hawkridge T., Verver S., Hughes E.J., Ota M., Sutherland J., Howe R., Dockrell H.M., Boom W.H., Thiel B., Ottenhoff T.H.M., Mayanja-Kizza H., Crampin A.C., Downing K., Hatherill M., Valvo J., Shankar S., Parida S.K., Kaufmann S.H.E., Walzl G., Aderem A., Hanekom W.A. // Lancet. 2016. V. 387. P. 2312–2322. https://doi.org/S0140-6736(15)01316-1
  61. Scriba T.J., Fiore-Gartland A., Penn-Nicholson A., Mulenga H., Kimbung Mbandi S., Borate B., Mendelsohn S.C., Hadley K., Hikuam C., Kaskar M., Musvosvi M., Bilek N., Self S., Sumner T., White R.G., Erasmus M., Jaxa L., Raphela R., Innes C., Brumskine W., Hiemstra A., Malherbe S.T., Hassan-Moosa R., Tameris M., Walzl G., Naidoo K., Churchyard G., Hatherill M. // Lancet Infect. Dis. 2021. V. 21. P. 354–365. https://doi.org/10.1016/S1473-3099(20)30914-2
  62. Zarogoulidis P., Kioumis I., Papanas N., Manika K., Kontakiotis T., Papagianis A., Zarogoulidis K. // J. Chemother. 2012. V. 24. P. 173–177. https://doi.org/10.1179/1973947812Y.0000000005
  63. Zhang L., Jiang X., Pfau D., Ling Y., Nathan C.F. // J. Exp. Med. 2021. V. 218. P. e20200887. https://doi.org/10.1084/jem.20200887
  64. Ranjbar S., Haridas V., Jasenosky L.D., Falvo J.V., Goldfeld A.E. // Cell Rep. 2015. V. 13. P. 874–883. https://doi.org/10.1016/j.celreP.2015.09.048
  65. Obregon-Henao A., Duque-Correa M.A., Rojas M., Garcia L.F., Brennan P.J., Ortiz B.L., Belisle J.T. // PLoS One. 2012. V. 7. P. e29970. https://doi.org/10.1371/journal.pone.0029970
  66. Singh P.P., Li L., Schorey J.S. // Traffic. 2015. V. 16. P. 555–571. https://doi.org/10.1111/tra.12278
  67. Cheng Y., Schorey J.S. // J. Exp. Med. 2018. V. 215. P. 2919–2935. https://doi.org/10.1084/jem.20180508
  68. Sullivan J.T., Young E.F., McCann J.R., Braunstein M. // Infect. Immun. 2012. V. 80. P. 996–1006. https://doi.org/10.1128/IAI.05987-11
  69. Miller B.K., Zulauf K.E., Braunstein M. // Microbiol. Spectr. 2017. V. 5. https://doi.org/10.1128/microbiolspec.TBTB2-0013-2016
  70. Cheng Y., Schorey J.S. // EMBO Rep. 2019. V. 20. P. e46613. https://doi.org/10.15252/embr.201846613
  71. O’Connell R.M., Saha S.K., Vaidya S.A., Bruhn K.W., Miranda G.A., Zarnegar B., Perry A.K., Nguyen B.O., Lane T.F., Taniguchi T., Miller J.F., Cheng G. // J. Exp. Med. 2004. V. 200. P. 437–445. https://doi.org/10.1084/jem.20040712
  72. Vdovikova S., Luhr M., Szalai P., Nygard Skalman L., Francis M.K., Lundmark R., Engedal N., Johansson J., Wai S.N. // Front. Cell Infect. Microbiol. 2017. V. 7. P. 154. https://doi.org/10.3389/fcimb.2017.00154
  73. Frantz R., Teubner L., Schultze T., La Pietra L., Muller C., Gwozdzinski K., Pillich H., Hain T., Weber-Gerlach M., Panagiotidis G.D., Mostafa A., Weber F., Rohde M., Pleschka S., Chakraborty T., Abu Mraheil M. // mBio. 2019. V. 10. P. e01223-19. https://doi.org/10.1128/mBio.01223-19
  74. Harding E. // Lancet Respir Med. 2020. V. 8. P. 19. https://doi.org/S2213-2600(19)30418-7
  75. Burkert S., Schumann R.R. // Vaccines (Basel). 2020. V. 8. P. 67. https://doi.org/10.3390/vaccines8010067

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (169KB)
3.

Download (367KB)
4.

Download (239KB)

Copyright (c) 2023 Ю.В. Скворцова, О.С. Быченко, Т.Л. Ажикина

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».