Territory Suitability Assessment for Conducting Detailed Geological and Mineralogical Mapping Based on Statistical Methods of Remote Sensing Data Processing Landsat-8: A Case Study in the Southeastern Transbaikalia, Russia
- Authors: Nafigin I.O.1, Ishmuhametova V.T.1, Ustinov S.A.1, Minaev V.A.1, Petrov V.A.1
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
- Issue: No 2 (2023)
- Pages: 61-83
- Section: МЕТОДЫ И СРЕДСТВА ОБРАБОТКИ И ИНТЕРПРЕТАЦИИ КОСМИЧЕСКОЙ ИНФОРМАЦИИ
- URL: https://journal-vniispk.ru/0205-9614/article/view/136985
- DOI: https://doi.org/10.31857/S0205961423010086
- EDN: https://elibrary.ru/MNATCH
- ID: 136985
Cite item
Abstract
The work considers the suitability of using multispectral satellite remote sensing data Landsat-8 for conducting regional geological and mineralogical mapping of the territory of south-eastern Transbaikalia (Russia) in conditions of medium- low-mountain relief and continental climate. The territory was chosen as the object of study due to its diverse metallogenic specialization (Au, U, Mo, Pb-Zn, Sn, W, Ta, Nb, Li, fluorite). Diversity in composition and age of ore-bearing massifs of intrusive, volcanogenic and sedimentary rocks are also of interest. Statistical processing algorithms to increase spectral information content of satellite data Landsat-8 were used; they include: principal component analysis (PCA); minimum noise fraction (MNF) and independent component analysis (ICA). Eigenvector matrices analysed on the basis of statistical processing results and two-dimensional correlation graphs were built to compare thematic layers with geological material classes: oxide/hydroxide group minerals containing transition iron ions (Fe3+ and Fe3+/Fe2+); a group of clay minerals containing A1–OH and Fe, Mg–OH; minerals containing Fe2+ and vegetation cover. Pseudo-coloured RGB composites representing the distribution and multiplication of geological materials classes was generated and interpreted. Integration of informative thematic layers with using fuzzy logic model was carried out to construct a prospectivity map. Received map was compared with geological information, and positive conclusions about territory suitability for further remote mapping research of hydrothermally altered zones and hypergenesis products in order to localize areas promising for identifying hydrothermal-metasomatic mineralization were made.
About the authors
I. O. Nafigin
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
Author for correspondence.
Email: estera-st@mail.ru
Russia, Moscow
V. T. Ishmuhametova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
Email: estera-st@mail.ru
Russia, Moscow
S. A. Ustinov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
Email: estera-st@mail.ru
Russia, Moscow
V. A. Minaev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
Email: estera-st@mail.ru
Russia, Moscow
V. A. Petrov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM) RAS
Email: estera-st@mail.ru
Russia, Moscow
References
- Андреева О.В., Петров В.А., Полуэктов В.В. Мезозойские кислые магматиты юго-восточного Забайкалья: петрогеохимия, связь с метасоматизмом и рудообразованием // Геология рудных месторождений. 2020. Т. 62. № 1. С. 76–104. https://doi.org/10.31857/S0016777020010013
- Ищукова Л.П., Игошин Ю.А., Авдеев Б.В., Губкин Г.Н., Филипченко Ю.А., Попова А.И., Рогова В.П., Макушин М.Ф., Хоментовский Б.Н., Спирин Э.К. Геология Урулюнгуевского рудного района и молибден-урановых месторождений Стрельцовского рудного поля / Под ред. Ищуковой Л.П., Наумовой С.С. М.: ЗАО “Геоинформмарк”. 1998. 529 с.
- Кирсанов А.А., Липияйнен К.Л., Смирнов М.Ю. Выявление площадей, перспективных на золотое оруденение, на основе результатов обработки аэро- и космических гиперспектральных данных // Региональная геология и металлогения. 2019. № 78. С. 82–90.
- Новикова М.С. Экономико-географические особенности освоения юго-восточных районов Забайкальского края / Под ред. В.Ф. Задорожного. Новосибирск: Академическое изд-во “Гео”, 2014.161 с.
- Петров В.А., Андреева О.В., Полуэктов В.В. Тектономагматические циклы и геодинамические обстановки формирования рудоносных систем Южного Приаргунья // Геология рудных месторождений. 2017. Т. 59. № 6. С. 445–469. https://doi.org/10.1134/S1075701517060034
- Сахновский М.Л, Бороздин А.П., Виноградов Л.А. Методические рекомендации по организации и проведению геолого-минерагенического картирования масштабов 1 : 500 000 и 1 : 200 000. СПб.: Изд-во ВСЕГЕИ, 2009. 280 с.
- Смирнова И.О., Кирсанов А.А., Камышникова Н.В. Обзор зарубежных достижений за последние пять лет в области использования мульти- и гиперспектральных спутниковых данных и современных методов их обработки в геологических исследованиях // Современные проблемы дистанционного зондирования Земли из космоса. 2020. Т. 17. № 1. С. 9–27.
- Шивохин Е.А., Озерский А.Ф., Артамонова Н.А., Духовский А.А., Карасев В.В., Куриленко А.В., Надеждина Т.Н., Павленко Ю.В., Раитина Н.И., Шор Г.М. Объяснительная записка: Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000 (третье поколение). Лист М–50 (Борзя). СПб.: Издательство картрофабрика ВСЕГЕИ, 2010. 553 с.
- Acharya T., Yang I. Exploring Landsat 8 // Int. J. Eng. Appl. Sci. 2015. № 4(4). P. 4–10.
- Adiri Z., Harti A.El., Jellouli A., Maacha L., Azmi, Zouhair M., Bachaoui M. Mineralogical mapping using Landsat-8 OLI, Terra ASTER and Sentinel-2A multispectral data in Sidi Flah Bouskour inlier, Moroccan Anti-Atlas // J. Spat. Sci. 2019. № 65. P. 147–171. https://doi.org/10.1080/14498596.2018.1490213
- Amer R., Kusky T., Ghulam A. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data // J. Afr. Earth Sci. 2010. № 56(2). P. 75–82. https://doi.org/10.1016/j.jafrearsci.2009.06.004
- Berk A., Bernstein L.S., Robertson D.C. MODTRAN: a moderate resolution model for LOWTRAN. U.S.C. Geophys. Lab. tech. rep. 1989. № 89(122). P. 44.
- Bishta A. Lithologic Discrimination Using Selective Image Processing Technique of Landsat 7 Data, Um Bogma Environs Westcentral Sinai, Egypt // J. King Abdulaziz Univ. Mar. Sci. 2009. № 20(1). P. 193–213. https://doi.org/10.4197/Ear.20-1.10
- Bonham-Carter, G.F. Geographic information systems for geoscientists. Modeling with GIS. Pergamon. Elsiver. 1994. P. 402.
- Carranza E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. Amsterdam. Elsiver. 2008. P. 347. https://doi.org/10.1016/s0168-6275(08)x0001-7
- Clark R.N., Swayze G.A. Mapping minerals, amorphous materials, environmental materials, vegetation, water, ice, and snow, and other materials: The USGS Tricorder Algorithm // Summaries of the Fifth Annual JPL Airborne Earth Science Workshop. CO: U.S. Geological Survey. 1995. P. 39–40.
- Chukwu G.U., Ijeh B.I., Olunwa K.C. Application of Landsat imagery for Landuse/Landcover analyses in the Afikpo sub-basin of Nigeria // Int. Res. J. Geol. Min. 2013. № 3(2). P. 67–81.
- Colby J.D. Topographic normalization in rugged terrain // Photogramm. Eng. Remote Sens. 1991. № 57(5). P. 531–537.
- Cooley T., Anderson G.P., Felde G.W., Hoke M.L., Ratkowski A.J., Chetwynd J.H., Gardner J.A., Adler-Golden S.M., Matthew M.W., Berk A., Bernstein L., Acharya P.K., Miller D., Lewis P. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation // Int. Geosci. Remote Sens. Symp. 2002. № 3. P. 1414–1418. https://doi.org/10.1109/IGARSS.2002.1026134.
- Comon P. Independent component analysis, A new concept // Signal Process. 1994. № 36(3). P. 287–314. https://doi.org/10.1016/0165-1684(94)90029-9
- Corumluoglu O., Vural A., Asri I. Determination of Kula basalts (geosite) in Turkey using remote sensing techniques // Arab. J. Geosci. 2015. № 8(11). P. 10105–10117. https://doi.org/10.1007/s12517-015-1914-4
- Gao B.C. NDWI – A normalized difference water index for remote sensing of vegetation liquid water from space // Remote Sens. Environ. 1996. № 58(3). P. 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3
- Gabr S., Ghulam A., Kusky T. Detecting areas of high-potential gold mineralization using ASTER data // Ore Geol. Rev. 2010. № 38. P. 59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007
- Ghanbari Y., Hezarkhani A., Ataei M., Pazand K. Mineral potential mapping with fuzzy models in the Kerman-Kashmar Tectonic Zone, Central Iran // Appl. Geomat. 2012. № 4. P. 173–186. https://doi.org/10.1007/s12518-012-0090-4
- Green A.A., Berman M., Craig M.D. A Transformation for ordering multispectral data in terms of image quality with implications for noise removal // IEEE Trans. Geosci. Remote Sens. 1988. № 26(1). p. 65–74. https://doi.org/10.1109/36.3001
- Hunt G.R., Ashley R.P. Spectra of altered rocks in the visible and near-infrared // Econ Geol. 1979. № 74(7). P. 1613–1629. https://doi.org/10.2113/gsecongeo.74.7.1613
- Inzana J., Kusky T., Higgs G., Tucker R. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar // J. Afr. Earth Sci. 2003. № 37(1–2). P. 59–72. https://doi.org/10.1016/S0899-5362(03)00071-X
- Irons J.R., Dwyer J.L., Barsi J.A. 2012. The next Landsat satellite; the Landsat Data Continuity Mission // Remote Sens. Environ. 2012. № 122. p. 11–21. https://doi.org/10.1016/j.rse.2011.08.026
- Kim Y.H., Choe K.U., Ri R.K. Application of fuzzy logic and geometric average: A Cu sulfide deposits potential mapping case study from Kapsan Basin, DPR Korea // Ore Geol. Rev. 2019. № 107. P. 239–247. https://doi.org/10.1016/j.oregeorev.2019.02.026
- Rouse J.W., Haas R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the Great Plains with ERTS // In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium. 10–14 December 1973. Washington, USA, 1973. P. 309–317.
- Kruse F.A., Lefkoff A.B., Boardman J.W., Heidebrecht K.B., Shapiro A.T.; Barloon P.J., Goetz A.F.H. The spectral image processing system (SIPS) – interactive visualization and analysis of imaging spectrometer data // Remote Sens. Environ. 1993. № 44. P. 145–163. https://doi.org/10.1016/0034-4257(93)90013-N
- Lawrence R.C., Mars J.C., Simpson C.J. Lithologic mapping of the Mordor, NT, Australia ultramafic complex by using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) // Remote Sens. Environ. 2005. № 99. P. 105–126. https://doi.org/10.1016/j.rse.2004.11.021
- Loughlin W.P. Principal component analysis for alteration mapping // Photogramm. Eng. Remote Sens. 1991. № 9. P. 1163–1169.
- Mars J.C., Rowan L.C. ASTER spectral analysis and lithologic mapping of the Khanneshin carbonate volcano, Afghanistan // Geosphere. 2011. № 7. P. 276–289. https://doi.org/10.1130/GES00630.1
- Mwaniki M.W., Matthias M.S.M., Schellmann G. Application of remote sensing technologies to map the structural geology of central Region of Kenya // IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015. № 8(4). P. 1855–1867. https://doi.org/10.1109/JSTARS.2015.2395094
- Novák V., Perfilieva I., Mockor J. Mathematical Principles of Fuzzy Logic. New York. Kluwer Academic Publishers. 1999. P. 320. https://doi.org/10.1007/978-1-4615-5217-8
- Ourhzif Z., Algouti A. Lithological mapping using Landsat 8 OLI and Aster multispectral data in Imini-Ounilla district South high Atlas of Marrakech. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019. XLII-2/W13. P. 1255–1262. https://doi.org/10.5194/isprs-archives-XLII-2-W13-1255-2019
- Pour B.A., Hashim M. Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran // J. Taibah Univ. Sci. 2015. № 9(2). P. 155–166. https://doi.org/10.1016/j.jtusci.2014.11.008
- Pour A.B., Hashim M., Park Y., Hong J.K. Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data // Geocarto Int. 2018a. № 33(12). P. 1281–1306. https://doi.org/10.1080/10106049.2017.1347207
- Pour A.B., Park Y., Park T.S., Hong J.K., Hashim M., Woo J. Ayoobi I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica // Polar Sci. 2018b. № 16. P. 23–46. https://doi.org/10.1016/j.polar.2018.02.004
- Rajendran S., Nasir S. ASTER capability in mapping of mineral resources of arid region: A review on mapping of mineral resources of the Sultanate of Oman // Ore Geol. Rev. 2019. № 108. P. 33–53. https://doi.org/10.1016/j.oregeorev.2018.04.014
- Richards, J.A., Xiuping J. Remote Sensing Digital Image Analysis: An Introduction. Germany: Berlin. Springer. 2006. p. 440.
- Rockwell, B.W., Hofstra, A.H. Identification of quartz and carbonate minerals across Northern Nevada using ASTER thermal infrared emissivity data, implications for geologic mapping and mineral resource investigations in well-studied and frontier areas // Geosphere. 2008. № 4. P. 218–246. https://doi.org/10.1130/GES00126.1
- Ruiz-Armenta J.R., Prol-Ledesma R.M. Techniques for enhancing the spectral response of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico // Int. J. Remote Sens. 1998. № 19(10). P. 1981–2000. https://doi.org/10.1080/014311698215108
- Sabins, F.F. Remote Sensing: Principles and Applications. Long Grove. Waveland Press. 2007.
- Sekandari M., Masoumi I., Pour A.B. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT) // Remote Sens. 2020. № 12(8). P. 1239. https://doi.org/10.3390/rs12081239
- Wambo J.D.T., Pour A.B., Sylvestre Gannon S., Asimow, P.D., Zoheir, B., Rodrigo dos ReisSalles, Nzenti J.P., Pradhan B., Muslim A.M. Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon // Ore Geol. Rev. 2020. № 122. P. 103530. https://doi.org/10.1016/j.oregeorev.2020.103530
- Zadeh L.A. Fuzzy sets // Inf. Control. 1965. № 8(3). P. 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Supplementary files
