Neural network algorithm for precipitation estimation from atms radiometer data

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents a neural network method for precipitation estimation using microwave measurements from ATMS radiometer on board Suomi NPP and NOAA-20/21 satellites. The algorithms based on two fully-connected neural networks, the first one is used to detect precipitation clouds and the other one is used to quantify precipitation rate. When training the neural networks, the reference source of information was an array of measurements simulated using the fast radiation transfer model RTTOV in the bands of ATMS instrument and the corresponding precipitation rates were taken from ECMWF ERA5 reanalysis data. Validation of the obtained precipitation estimates was carried out using the results of the MIRS and GPROF algorithms for satellite radiometer ATMS, as well as ground-based radar observations from NIMROD. The results of the validation showed a high accuracy level consistent with many others works in this research field. The validation was carried out for land and water surface separately. The comparison with MIRS algorithm showed the correlation coefficient was more 0.9, and the RMSE error was approximately 0.78 mm/h for water and 0.84 mm/h for land surface. The same metrics for GPROF algorithm showed the correlation coefficient was ~0.8, and the RMSE error was approximately 1.27 mm/h and 0.9 for water and land surface, respectively. When compared with ground-based NIMROD radar data, the correlation and the RMSE were 0.47 and 1.37 mm/h, respectively. The results of the validation confirm the performance of the presented neural network method for precipitation estimation. In addition, further minor refinement of the presented algorithm will make it possible to apply it to measurements of other microwave satellite instruments, including Russian ones, such as MTVZA-GY, installed on Meteor-M satellites.

Full Text

Restricted Access

About the authors

A. A. Filei

Far-Eastern Center of State Research Center for Space Hydrometeorology “Planeta”

Author for correspondence.
Email: andreyvm-61@mail.ru
Russian Federation, Khabarovsk

A. I. Andreev

Far-Eastern Center of State Research Center for Space Hydrometeorology “Planeta”

Email: andreyvm-61@mail.ru
Russian Federation, Khabarovsk

References

  1. Aonashi K. et al. GSMaP Passive Microwave Precipitation Retrieval Algorithm: Algorithm Description and Validation // Journal of the Meteorological Society of Japan. Ser. II. 2009. V. 87A. P. 119–136. doi: 10.2151/jmsj.87A.119.
  2. Aonashi K., Ferraro R.R. Microwave sensors, imagers and sounders // Satellite Precipitation Measurement / Eds. Levizzani V., Kidd C., Kirschbaum D.B., Kummerow C.D., Nakamura K., Turk F.J. Springer: Cham. 2020. V. 1. P. 63–81. doi: 10.1007/978-3-030-24568-9_4.
  3. ATBD H01 – Algorithms Theoretical Baseline Document – ATBD-01 new rel.: Precipitation rate at ground by MW conical scanners. EUMETSAT, Doc. No: SAF/HSAF/ATBD-01new rel., 2013.
  4. Barlakas V., Galligani V.S., Geer A.J., Eriksson P. On the accuracy of RTTOV-SCATT for radiative transfer at all-sky microwave and submillimeter frequencies // J. Quant. Spectrosc. Radiat. Transf. 2022. V. 283. doi: 10.1016/j.jqsrt.2022.108137.
  5. Berg W., and et al. Intercalibration of the GPM Microwave Radiometer Constellation // J. Atmos. Oceanic Technol. 2016. V. 33(12). P. 2639–2654. doi: 10.1175/JTECH-D-16-0100.1.
  6. Camplani A., Casella D., Sanò P., Panegrossi G. The Passive microwave Empirical cold Surface Classification Algorithm (PESCA): Application to GMI and ATMS // J. Hydrometeorol. 2021. V. 22. P. 1727–1744. doi: 10.1175/JHM-D-20-0260.1.
  7. Ebert E.E. Fuzzy verification of high-resolution gridded forecasts: A review and proposed framework // Meteor. Appl. 2008. V. 15. P. 51–64. doi: 10.1175/JHM-D-20-0260.1.
  8. Eriksson P., Ekelund R., Mendrok J., Brath M., Lemke O., Buehler S.A. A general database of hydrometeor single scattering properties at microwave and sub-millimetre wavelengths // Earth Syst. Sci. Data. 2018. V. 10. P. 1301–1326. doi: 10.5194/essd-10-1301-2018.
  9. Ferraro R., Weng F., Grody N.C., Zhao L. Precipitation characteristics over land from the NOAA-15 AMSU Sensor // Geophysical Research Letters. 2000. V. 27(17). P. 2669–2672. doi: 10.1029/2000GL011665.
  10. Ferraro R., Marks G.F. The development of SSM/I rain-rate retrieval algorithms using ground-based radar measurements // J. Atmos. Ocean. Technol. 1995. V. 12. P. 755–770. doi: 10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2.
  11. Geer A.J., Bauer P., Lonitz K., Barlakas V., Eriksson P., Mendrok J., Doherty A., Hocking J., Chambon P. Bulk hydrometeor optical properties for microwave and sub-millimetre radiative transfer in RTTOV-SCATT v13.0 // Geosci. Model Dev. 2021. V. 14. P. 7497–7526. doi: 10.5194/gmd-14-7497-2021.
  12. Goodfellow I., Bengio Y., Courville A. Deep learning // MIT press. 2016. 802 p.
  13. Gorooh V.A., Asanjan A.A., Nguyen P., Hsu K., Sorooshian S. Deep Neural Network High Spatiotemporal Resolution Precipitation Estimation (Deep-STEP) Using Passive Microwave and Infrared Data // J. Hydrometeorol. 2022. V. 23. P. 597–617. doi: 10.1175/JHM-D-21-0194.1.
  14. Guo H. et al. Inter-comparison of high-resolution satellite precipitation products over Central Asia // Remote Sensing. 2015. V. 7(6). P. 7181–7211. doi: 10.3390/rs70607181.
  15. Hair J.F., Tatham R.L., Anderson R.E., Black W. Multivariate Data Analysis (5th ed.) // Upper Saddle River, NJ: Prentice Hall, 1998. 761 p.
  16. Hersbach H. et al. The ERA5 Global Reanalysis // Quarterly Journal of the Royal Meteorological Society. 2020. V. 146. P. 1999–2049. doi: 10.1002/qj.3803.
  17. Hong Y., Hsu K.-L., Sorooshian S., Gao X. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system // J. Appl. Meteorol. 2004. V. 43. P. 1834–1853. doi: 10.1175/JAM2173.1.
  18. Huffman G.J. et al. Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG) // Satellite precipitation measurement / Eds. Levizzani V., Kidd C., Kirschbaum D.B., Kummerow C.D., Nakamura K., Turk F.J. Springer, Cham. 2020. P. 343–353.
  19. Iturbide-Sanchez F. et al. Assessment of a variational inversion system for rainfall rate over land and water surfaces // IEEE Trans. Geosci. Remote Sens. 2011. V. 49(9). P. 3311–3333. doi: 10.1109/TGRS.2011.2119375.
  20. John V.O., Buehler S.A. The impact of ozone lines on AMSU-B radiances // Geophysical Research Letters. 2004. V. 31(21). doi: 10.1029/2004GL021214.
  21. JPSS ATMS SDR Science Team. Joint Polar Satellite System Advanced Technology Microwave Sounder (ATMS) SDR Radiometric Calibration. Algorithm Theoretical Basis Document. 2022. 52 p. (https://www.star.nesdis.noaa.gov/jpss/documents/ATBD/D0001-M01-S01-001_JPSS_ATBD_ATMS-SDR_B.pdf) (2024.02.20)
  22. Karbou F., Aires F., Prigent C., Eymard L. Potential of Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B measurements for temperature and humidity sounding over land // Journal of Geophysical Research Atmospheres. 2005. V. 110(D07109). doi: 10.1029/2004JD005318.
  23. Kidd C., Levizzani V. Status of satellite precipitation retrievals // Hydrol. Earth Syst. Sci. 2011. V. 15. P. 1109–1116. doi: 10.5194/hess-15-1109-2011.
  24. Kim M., Lee E. Validation and Comparison of Climate Reanalysis Data in the East Asian Monsoon Region // Atmosphere. 2022. V. 13(10). doi: 10.3390/atmos13101589.
  25. Kingma D.P., Ba J. Adam: A method for stochastic optimization // arXiv preprint arXiv:1412.6980. 2014. 15 p.
  26. Kummerow C.D., Hong Y., Olson W.S., Yang S., Adler R.F., McCollum J., Ferraro R., Petty G., Shin D.-B., Wilheit T.T. The Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors // J. Appl. Meteorol. 2001. V. 40(11). P. 1801–1820. DOI: /10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.
  27. Kummerow C.D., Giglio L. A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: Algorithm description // J. Appl. Meteorol. 1994. V. 33(1). P. 3–18. doi: 10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2.
  28. Kummerow C.D., Mack R.A., Hakkarinen I.M. A self-consistency approach to improve microwave rainfall rate estimation from space // J. Appl. Meteorol. 1989. V. 28(9). P. 869–884. doi: 10.1175/1520-0450(1989)028<0869:ASCATI>2.0.CO;2.
  29. Kummerow C.D., Olson W.S., Giglio L. A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors // IEEE Trans. Geosci. Remote Sens. 1996. V. 34(5). P. 1213–1232. doi: 10.1109/36.536538.
  30. Kummerow C.D., Barnes W., Kozu T., Shiue J., Simpson J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package // J. Atmos. Oceanic Technol. 1998. V. 15. P. 809–817. doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.
  31. Kummerow C.D., Randel D.L., Kulie M., Wang N.-Y., Ferraro R., Munchak S.J., Petkovic V. The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme // Journal of Atmospheric and Oceanic Technology, 2015. V. 32(12). P. 2265–2280. doi: 10.1175/JTECH-D-15-0039.1.
  32. Kummerow C.D., Ferraro R., Randel D. AMSR-E/AMSR2 Unified L2B Global Swath Surface Precipitation, Version 1 // Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. 2020. 16 p.
  33. Lavers D.A., Simmons A., Vamborg F., Rodwell M.J. An evaluation of ERA5 precipitation for climate monitoring // Quarterly Journal of the Royal Meteorological Society. 2022. V. 148. P. 3152–3165. doi: 10.1002/qj.4351.
  34. Laviola S., Levizzani V. The 183-wsl fast rain rate retrieval algorithm. part 1: Retrieval design // Atmospheric Research. 2011. V. 99(3–4). P. 443–461. doi: 10.1016/j.atmosres.2010.11.013.
  35. Liu G. A database of microwave single-scattering properties for nonspherical ice particles // B. Am. Meteor. Soc., 2008. V. 111. P. 1563–1570. doi: 10.1175/2008BAMS2486.1.
  36. Liu S., Grassotti C., Liu Q., Lee Y-K., Honeyager R., Zhou Y., Fang M. The NOAA microwave integrated retrieval system (MiRS): Validation of precipitation from multiple polar-orbiting satellites // Journal IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020. V. 13. P. 3019–3031. doi: 10.1109/JSTARS.2020.3000348.
  37. Liu S., Grassotti C., Chen J., Liu Q. GPM products from the mircrowave integrated retrieval system (MiRS) // IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2017. V. 10(6). P. 2565–2574. doi: 10.1109/JSTARS.2017.2716356.
  38. Mas J.F., Flores J.J. The application of artificial neural networks to the analysis of remotely sensed data // International Journal of Remote Sensing. 2008. V. 29(3). P. 617–663. doi: 10.1080/01431160701352154.
  39. Matveev L.T. Kurs obshchej meteorologii. Fizika atmosfery [Course of general meteorology. Atmospheric physics] // L.: Gidrometeoizdat, 1984. 751 p. (In Russian).
  40. Moradi I., Goldberg M., Brath M., Ferraro R., Buehler S.A., Saunders R., Sun N. Performance of Radiative Transfer Models in the Microwave Region // JGR Atmosphere. 2020. V. 125(6). doi: 10.1029/2019JD031831.
  41. Passive Microwave Algorithm Team Facility: GLOBAL PRECIPITATION MEA SUREMENT (GPM) MISSION. 2022. 62 p. (https://gpm.nasa.gov/sites/default/files/2022-06/ATBD_GPM_V7_GPROF.pdf ) (2024.02.20).
  42. Petty G.W., Katsaros K.B. Nimbus-7 SMMR Precipitation Observations Calibrated against Surface Radar during TAMEX // Journal of Applied Meteorology and Climatology. 1992. V. 31. P. 489–505.
  43. Petty G.W. Physical retrievals of over-ocean rain rate from multichannel microwave imagery. Part I: Theoretical characteristics of normalized polarization and scattering indices // Meteorol. Atmos. Phys. 1994. V. 54. P. 79–99.
  44. Pfreundschuh S., Brown P.J., Kummerow C.D., Eriksson P., Norrestad T. GPROF-NN: a neural-network-based implementation of the Goddard Profiling Algorithm // Atmos. Meas. Tech., 2022. V. 15. P. 5033–5060. doi: 10.5194/amt-15-5033-2022.
  45. Romanov P. Global Multisensor Automated satellite-based Snow and Ice Mapping System (GMASI) for cryosphere monitoring // Remote Sensing of Environment. 2017. V. 196(C1). P. 42–55. doi: 10.1016/j.rse.2017.04.023.
  46. Sanò P., Casella D., Camplani A., D’Adderio L.P., Panegrossi G.A. Machine Learning Snowfall Retrieval Algorithm for ATMS // Remote Sens. 2022. V. 14(6). 1467. doi: 10.3390/rs14061467.
  47. Sanò P., Panegrossi G., Casella D., Di Paola F., Milani L., Mugnai A., Petracca M., Dietrich S. The Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies // Atmos. Meas. Tech. 2015. V. 8. P. 837–857. doi: 10.5194/amt-8-837-2015.
  48. Sanò P., Panegrossi G., Casella D., Marra A.C., Di Paola F., Dietrich S. The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: description and verification study over Europe and Africa using GPM and TRMM spaceborne radars // Atmos. Meas. Tech. 2016. V. 9. P. 5441–5460. doi: 10.5194/amt-9-5441-2016.
  49. Sanò P., Panegrossi G., Casella D., Marra A.C., D’Adderio L.P., Rysman J.F., Dietrich S. The Passive Microwave Neural Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer // Remote Sens. 2018. V. 10(7). doi: 10.3390/rs10071122.
  50. Sazonov D.S. Issledovanie vozmozhnosti vosstanovleniya intensivnosti osadkov po izmereniyam MTVZA-GYa (Study the possibility of precipitation intensity recovery from MTVZA-GYa measurements) // Izvestiya. Physika Atmosphery i Okeana. V. 5. P. 23–35. doi: 10.31857/S020596142305007X.
  51. Svozil D., Kvasnicka V., Pospichal J. Introduction to multi-layer feed-forward neural networks // Chemometrics and intelligent laboratory systems. 1997. V. 39(1). P. 43–62. doi: 10.1016/S0169-7439(97)00061-0.
  52. Staelin D., Chen F. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite // IEEE T. Geosci. Remote. 2000. V. 38. P. 2322–2332. doi: 10.1109/36.868889.
  53. Surussavadee C., Staelin D.H. Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical Weather Prediction Model, Part I: Retrieval Design // IEEE T. Geosci. Remote. 2008. V. 46. P. 99–108. doi: 10.1109/TGRS.2007.908302.
  54. Tomaso Di E., Romano F., Cuomo V. Rainfall estimation from satellite passive microwave observations in therange 89 GHz to 190 GHz // J. Geophys. Res., 2009. V. 114(D18203). doi: 10.1029/2009JD011746.
  55. Wang D., Prigent C., Kilic L., Fox S., Harlow C., Jimenez C., Aires F., Grassotti C., Karbou F. Surface Emissivity at Microwaves to Millimeter Waves over Polar Regions: Parameterization and Evaluation with Aircraft Experiments // Journal of atmospheric and oceanic technology. 2017. V. 34(5). P. 1039–1059. doi: 10.1175/JTECH-D-16-0188.1.
  56. Wentz F.J., Spencer R.W. SSM/I rain retrievals within a unified all-weather ocean algorithm // J. Atmospheric Sci. 1998. V. 55(9). P. 1613–1627. doi: 10.1175/1520-0469(1998)055<1613:SIRRWA>2.0.CO;2.
  57. Wilheit T., Kummerow C.D., Ferraro R. NASDARainfall algorithms for AMSR-E // IEEE Transactions on Geoscience and Remote Sensing. 2003. V. 41(2). P. 204–214. doi: 10.1109/TGRS.2002.808312.
  58. Wilheit T.T., Chang A.T.C., Chiu L.S. Retrieval of monthly rainfall indices from microwave radiometric measurement using probability distribution functions // J. Atmos. Ocean. Technol. 1991. V. 8. P. 118–136. doi: 10.1175/1520-0426(1991)008<0118:ROMRIF>2.0.CO;2.
  59. Xu Y., Chen X., Liu M., Wang J., Zhang F., Cui J., Zhou H. Spatial–Temporal Relationship Study between NWP PWV and Precipitation: A Case Study of ‘July 20’ Heavy Rainstorm in Zhengzhou // Remote Sens. 2022. V. 14(15). doi: 10.3390/rs14153636.
  60. You Y., Meng H., Dong J., Fan Y., Ferraro R., Gu G., Wang L. Snowfall Detection Algorithm for ATMS Over Ocean, Sea Ice, and Coast // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2022. V. 15. P. 1411–1420. doi: 10.1109/JSTARS.2022.3140768.
  61. You Y., Wang N., Ferraro R., Meyers P. A Prototype Precipitation Retrieval Algorithm over Land for ATMS // J. Hydrometeor. V. 17(5). P. 1601–1621. doi: 10.1175/JHM-D-15-0163.1.
  62. Zabolotskikh E.V., Chapron B. Neyronno-cetevoy metod otsenki intensivnosti dozhdya nad okeanami po dannym izmereniy sputnikovogo radiometra AMSR2 (Neural Network algorithm for rain rate retrieval over oceans using AMSR2 data) // Izvestiya. Physika Atmosphery i Okeana. 2016. V. 52(1). P. 82–88.
  63. Zabolotskikh E.V., Chapron B. Validation of the New Algorithm for Rain Rate Retrieval from AMSR2 Data Using TMI Rain Rate Product // Advances in Meteorology. 2015. doi: 10.1155/2015/492603.
  64. Zhao Z., Shen L., Li L., Wang H., He B-J. Local Climate Zone Classification Scheme Can Also Indicate Local-Scale Urban Ventilation Performance: An Evidence-Based Study // Atmosphere. 2020. 11(8). doi: 10.3390/atmos11080776.
  65. Zhu H., Chen S., Li Z., Gao L., Li X. Comparison of Satellite Precipitation Products: IMERG and GSMaP with Rain Gauge Observations in Northern China // Remote Sensing. 2022. V. 14(19). 4748. doi: 10.3390/rs14194748.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Weighting functions of the spectral channels of the ATMS radiometer.

Download (392KB)
3. Fig. 2. General diagram of the process of modeling measurements in the channels of the ATMS device.

Download (241KB)
4. Fig. 3. Distribution of precipitation intensity in the training sample.

Download (130KB)
5. Fig. 4. Distribution of precipitation intensity in the training sample by precipitation intensity classes: a ‒ light; b ‒ moderate; c ‒ heavy; d ‒ very heavy.

Download (371KB)
6. Fig. 5. Scatter plots of precipitation intensity values ​​from MIRS and APNA data for water (a) and for land (b).

Download (290KB)
7. Fig. 6. Precipitation intensity according to MIRS (a) and APNA (b) data.

Download (271KB)
8. Fig. 7. Scatter plots of precipitation intensity values ​​from GPROF and APNA data for water (a) and for land (b).

Download (297KB)
9. Fig. 8. Precipitation intensity according to GPROF (a) and APNA (b) data.

Download (415KB)
10. Fig. 9. Scatter plot of precipitation intensity values ​​from NIMROD and APNA data.

Download (159KB)
11. Fig. 10. Precipitation intensity according to NIMROD (a) and APNA (b) data.

Download (344KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».