Posttranslational modifications of proteins with disordered structure in the regulation of regeneration and neurodegeneration of brain cells
- 作者: Demyanenko S.V.1, Khaitin A.M.1, Batalshchikova S.A.1
-
隶属关系:
- Southern Federal University, Academy of Biology and Biotechnology
- 期: 卷 42, 编号 5 (2025)
- 页面: 347-355
- 栏目: ОБЗОРЫ
- URL: https://journal-vniispk.ru/0233-4755/article/view/353189
- DOI: https://doi.org/10.31857/S0233475525050013
- ID: 353189
如何引用文章
详细
This review focuses on the role of intrinsically disordered proteins and their post-translational modifications in the regulation of neuronal regeneration and neurodegeneration processes. Intrinsically disordered proteins, with their high conformational flexibility and lack of stable tertiary structure, can participate in a variety of cellular processes through dynamic and specific interactions with various partners. They are involved in the regulation of transcription, apoptosis, cell cycle, and stress responses. Key examples of such proteins are the transcription factors p53, c-Myc, FOXO3a, and E2F1, which, depending on the set of post-translational modifications, can switch between the functions of protecting neurons and activating their death. Particular attention is paid to the mechanisms by which post-translational modifications – such as acetylation, phosphorylation, and ubiquitination – alter the localization, stability, and activity of intrinsically disordered proteins, affecting the outcome of cell fate. The contribution of misfolded proteins with structurally disordered domains, such as Tau and α-synuclein, to the pathogenesis of neurodegenerative diseases is also discussed. The article highlights the challenges associated with therapeutic targeting of such proteins due to their structural plasticity and diversity of post-translational modifications. Promising approaches to modulating the overall activity and functional state of target proteins are discussed, including modulation of the activity of post-translational modification enzymes and proteostasis mechanisms. The review illustrates the critical need for a comprehensive study of post-translational modifications as mechanisms of disordered protein regulation for the development of new strategies for the treatment of acute nerve cell damage and neurodegenerative diseases.
作者简介
S. Demyanenko
Southern Federal University, Academy of Biology and Biotechnology
Email: svdemyanenko@sfedu.ru
Rostov-on-Don, 344090 Russia
A. Khaitin
Southern Federal University, Academy of Biology and Biotechnology
Email: svdemyanenko@sfedu.ru
Rostov-on-Don, 344090 Russia
S. Batalshchikova
Southern Federal University, Academy of Biology and Biotechnology
编辑信件的主要联系方式.
Email: svdemyanenko@sfedu.ru
Rostov-on-Don, 344090 Russia
参考
- Wright P.E., Dyson H.J. 2015. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol. 16, 18–29. https://doi.org/10.1038/nrm3920
- Trivedi R., Nagarajaram H.A. 2022. Intrinsically disordered proteins: An overview. Int. J. Mol. Sci. 23, 14050. https://doi.org/10.3390/ijms232214050
- Khaitin A.M., Guzenko V.V., Bachurin S.S., Demyanenko S.V. 2024. c-Myc and FOXO3a – The everlasting decision between neural regeneration and degeneration. Int. J. Mol. Sci. 25, 12621. https://doi.org/10.3390/ijms252312621
- Khoury G.A., Baliban R.C., Floudas C.A. 2011. Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database. Sci. Rep. 1, 90. https://doi.org/10.1038/srep00090
- Iakoucheva L.M. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049. https://doi.org/10.1093/nar/gkh253
- Narasumani M., Harrison P.M. 2018. Discerning evolutionary trends in post-translational modification and the effect of intrinsic disorder: Analysis of methylation, acetylation and ubiquitination sites in human proteins. PLOS Comput. Biol. 14, e1006349. https://doi.org/10.1371/journal.pcbi.1006349
- Cesaro L., Pinna L.A., Salvi M. 2015. A comparative analysis and review of lysyl residues affected by posttranslational modifications. Curr. Genomics. 16, 128–138. https://doi.org/10.2174/1389202916666150216221038
- Lee T.-Y. 2006. dbPTM: An information repository of protein post-translational modification. Nucleic Acids Res. 34, D622–627. https://doi.org/10.1093/nar/gkj083
- Johnson L.N., Lewis R.J. 2001. Structural basis for control by phosphorylation. Chem. Rev. 101, 2209–2242. https://doi.org/10.1021/cr000225s
- Guzenko V.V., Bachurin S.S., Khaitin A.M., Dzreyan V.A., Kalyuzhnaya Y.N., Bin H., Demyanenko S.V. 2023. Acetylation of p53 in the cerebral cortex after photothrombotic stroke. Transl. Stroke Res. 15, 970–985. https://doi.org/10.1007/s12975-023-01183-z
- Guzenko V.V., Bachurin S.S., Dzreyan V.A., Khaitin A.M., Kalyuzhnaya Y.N., Demyanenko S.V. 2024. Acetylation of c-Myc at Lysine 148 protects neurons after ischemia. Neuromolecular Med. 26, 8. https://doi.org/10.1007/s12017-024-08777-2
- Castillo D.S., Campalans A., Belluscio L.M., Carcagno A.L., Radicella J.P., Cánepa E.T., Pregi N. 2015. E2F1 and E2F2 induction in response to DNA damage preserves genomic stability in neuronal cells. Cell Cycle. 14, 1300–1314. https://doi.org/10.4161/15384101.2014.985031
- Zhang Y., Song X., Herrup K. 2020. Context-dependent functions of E2F1: Cell cycle, cell death, and DNA damage repair in cortical neurons. Mol. Neurobiol. 57, 2377–2390. https://doi.org/10.1007/s12035-020-01887-5
- Uzdensky A.B. 2019. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins. Apoptosis. 24, 687–702. https://doi.org/10.1007/s10495-019-01556-6
- Zhu W.-G. 2017. Regulation of p53 acetylation. Sci. China Life Sci. 60, 321–323. https://doi.org/10.1007/s11427-016-0353-0
- Demyanenko S., Dzreyan V., Sharifulina S. 2021. Histone deacetylases and their isoform-specific inhibitors in ischemic stroke. Biomedicines. 9, 1445. https://doi.org/10.3390/biomedicines9101445
- Raz L., Zhang Q., Han D., Dong Y., De Sevilla L., Brann D.W. 2011. Acetylation of the pro-apoptotic factor, p53 in the hippocampus following cerebral ischemia and modulation by estrogen. PLoS ONE. 6, e27039. https://doi.org/10.1371/journal.pone.0027039
- Wi S., Yu J.H., Kim M., Cho S.-R. 2016. In Vivo expression of reprogramming factors increases hippocampal neurogenesis and synaptic plasticity in chronic hypoxic-ischemic brain injury. Neural. Plast. 2016, 2580837. https://doi.org/10.1155/2016/2580837
- Demyanenko S., Uzdensky A. 2017. Profiling of signaling proteins in penumbra after focal photothrombotic infarct in the rat brain cortex. Mol. Neurobiol. 54, 6839–6856. https://doi.org/10.1007/s12035-016-0191-x
- Venkateswaran N., Conacci-Sorrell M. 2020. MYC leads the way. Small GTPases. 11, 86–94. https://doi.org/10.1080/21541248.2017.1364821
- Das S.K., Lewis B.A., Levens D. 2023. MYC: a complex problem. Trends Cell Biol. 33, 235–246. https://doi.org/10.1016/j.tcb.2022.07.006
- Farrell A.S., Sears R.C. 2014. MYC degradation. Cold Spring Harb. Perspect. Med. 4, a014365–a014365. https://doi.org/10.1101/cshperspect.a014365
- Marinkovic T., Marinkovic D. 2021. Obscure involvement of MYC in neurodegenerative diseases and neuronal repair. Mol. Neurobiol. 58, 4169–4177. https://doi.org/10.1007/s12035-021-02406-w
- Hu W., Yang Z., Yang W., Han M., Xu B., Yu Z., Shen M., Yang Y. 2019. Roles of forkhead box O (FoxO) transcription factors in neurodegenerative diseases: A panoramic view. Prog. Neurobiol. 181, 101645. https://doi.org/10.1016/j.pneurobio.2019.101645
- Calissi G., Lam E.W.-F., Link W. 2021. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 20, 21–38. https://doi.org/10.1038/s41573-020-0088-2
- Wang X., Hu S., Liu L. 2017. Phosphorylation and acetylation modifications of FOXO3a: Independently or synergistically? Oncol. Lett. 13, 2867–2872. https://doi.org/10.3892/ol.2017.5851
- Wang Z., Yu T., Huang P. 2016. Post-translational modifications of FOXO family proteins (Review). Mol. Med. Rep. 14, 4931–4941. https://doi.org/10.3892/mmr.2016.5867
- Ferber E.C., Peck B., Delpuech O., Bell G.P., East P., Schulze A. 2012. FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968–979. https://doi.org/10.1038/cdd.2011.179
- Daitoku H., Sakamaki J., Fukamizu A. 2011. Regulation of FoxO transcription factors by acetylation and protein–protein interactions. Biochim. Biophys. Acta. 1813, 1954–1960. https://doi.org/10.1016/j.bbamcr.2011.03.001
- Martínez-Balbás M.A., Bauer U.M., Nielsen S.J., Brehm A., Kouzarides T. 2000. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671. https://doi.org/10.1093/emboj/19.4.662
- Hou S.T., Callaghan D., Fournier M., Hill I., Kang L., Massie B., Morley P., Murray C., Rasquinha I., Slack R., MacManus J.P. 2000. The transcription factor E2F1 modulates apoptosis of neurons. J. Neurochem. 75, 91–100. https://doi.org/10.1046/j.1471-4159.2000.0750091.x
- Pediconi N., Ianari A., Costanzo A., Belloni L., Gallo R., Cimino L., Porcellini A., Screpanti I., Balsano C., Alesse E., Gulino A., Levrero M. 2003. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat. Cell Biol. 5, 552–558. https://doi.org/10.1038/ncb998
- Stevens C., Smith L., La Thangue N.B. 2003. Chk2 activates E2F-1 in response to DNA damage. Nat. Cell Biol. 5, 401–409. https://doi.org/10.1038/ncb974
- Manickavinayaham S., Velez-Cruz R., Biswas A.K., Chen J., Guo R., Johnson D.G. 2020. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle. 19, 2260–2269. https://doi.org/10.1080/15384101.2020.1801190
- Hofmann F., Martelli F., Livingston D.M., Wang Z. 1996. The retinoblastoma gene product protects E2F-1 from degradation by the ubiquitin-proteasome pathway. Genes Dev. 10, 2949–2959. https://doi.org/10.1101/gad.10.23.2949
- Dick F.A., Dyson N. 2003. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol. Cell. 12, 639–649. https://doi.org/10.1016/S1097-2765(03)00344-7
- Utami K.H., Morimoto S., Mitsukura Y., Okano H. 2025. The roles of intrinsically disordered proteins in neurodegeneration. Biochim. Biophys. Acta. 1869, 130772. https://doi.org/10.1016/j.bbagen.2025.130772
- Meade R.M., Fairlie D.P., Mason J.M. 2019. Alpha-synuclein structure and Parkinson’s disease – lessons and emerging principles. Mol. Neurodegener. 14, 29. https://doi.org/10.1186/s13024-019-0329-1
- Uversky V.N. 2025. How to drug a cloud? Targeting intrinsically disordered proteins. Pharmacol. Rev. 77, 100016. https://doi.org/10.1124/pharmrev.124.001113
- Neira J.L., Bintz J., Arruebo M., Rizzuti B., Bonacci T., Vega S., Lanas A., Velázquez-Campoy A., Iovanna J.L., Abián O. 2017. Identification of a drug targeting an intrinsically disordered protein involved in pancreatic adenocarcinoma. Sci. Rep. 7, 39732. https://doi.org/10.1038/srep39732
- Santofimia-Castaño P., Rizzuti B., Xia Y., Abian O., Peng L., Velázquez-Campoy A., Neira J.L., Iovanna J. 2020. Targeting intrinsically disordered proteins involved in cancer. Cell. Mol. Life Sci. 77, 1695–1707. https://doi.org/10.1007/s00018-019-03347-3
- Pegoraro S., Ros G., Sgubin M., Petrosino S., Zambelli A., Sgarra R., Manfioletti G. 2020. Targeting the intrinsically disordered architectural High Mobility Group A (HMGA) oncoproteins in breast cancer: learning from the past to design future strategies. Expert Opin. Ther. Targets. 24, 953–969. https://doi.org/10.1080/14728222.2020.1814738
- Guzenko V.V., Bachurin S.S., Khaitin A.M., Borisenko E.A., Demyanenko S.V. 2025. Effects of E2F1 Point acetylation at Lysine 117 or 125 on neuronal apoptosis after ischemic injury. Neurochem. Res. 50, 202. https://doi.org/10.1007/s11064-025-04453-4
- Uversky V.N. 2010. Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: Another illustration of the D2 concept. Expert Rev. Proteomics. 7, 543–564. https://doi.org/10.1586/epr.10.36
- Coskuner O., Uversky V.N. 2019. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer’s and Parkinson’s diseases. In: Progress in Molecular Biology and Translational Science, vol. 166. Elsevier, p. 145–223. https://doi.org/10.1016/bs.pmbts.2019.05.007
- Norris V., Oláh J., Krylov S.N., Uversky V.N., Ovádi J. 2023. The Sherpa hypothesis: Phenotype-Preserving Disordered Proteins stabilize the phenotypes of neurons and oligodendrocytes. Npj Syst. Biol. Appl. 9, 31. https://doi.org/10.1038/s41540-023-00291-8
- Lee J.M., Hammarén H.M., Savitski M.M., Baek S.H. 2023. Control of protein stability by post-translational modifications. Nat. Commun. 14, 201. https://doi.org/10.1038/s41467-023-35795-8
- Rutledge B.S., Choy W.-Y., Duennwald M.L. 2022. Folding or holding?–Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. J. Biol. Chem. 298, 101905. https://doi.org/10.1016/j.jbc.2022.101905
- Cai Z., Yang Z., Li H., Fang Y. 2024. Research progress of PROTACs for neurodegenerative diseases therapy. Bioorganic Chem. 147, 107386. https://doi.org/10.1016/j.bioorg.2024.107386
补充文件

