Activation of FLT3-associated signaling pathways in quizartinib-resistant macrophage-like cells of acute myeloid leukemia
- Authors: Lomovskaya Y.V.1, Kobyakova M.I.1, Krasnov K.S.1,2, Lomovsky A.I.1, Mescheryakova E.I.1,3, Fadeev R.S.1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Institute of Clinical and Experimental Lymphology, Branch of ICG, Siberian Branch of the Russian Academy of Sciences
- Institute of Cell Biophysics, Russian Academy of Sciences
- Issue: Vol 42, No 5 (2025)
- Pages: 395-405
- Section: ***
- URL: https://journal-vniispk.ru/0233-4755/article/view/353192
- DOI: https://doi.org/10.31857/S0233475525050042
- ID: 353192
Cite item
Abstract
Investigating the mechanisms of resistance of acute myeloid leukemia (AML) cells to anticancer therapy, including targeted drugs such as the FLT3 inhibitor quizartinib, remains highly relevant in modern molecular oncology. In this work, we explored the mechanisms underlying quizartinib resistance in macrophage-like THP-1ad cells. We demonstrated that resistance is associated with downregulation of the expression of the FLT3 receptor due to suppressed FLT3 gene transcriptional activity, while key downstream signaling pathways (STAT5, PI3K/AKT, ERK) remain functionally active. The findings indicate that FLT3 inhibitor resistance in AML cells can develop independently of classical mutational mechanisms, instead relying on alternative activation of signaling cascades. These results expand current understanding of resistance mechanisms in AML and support the rationale for targeting signaling pathways downstream of FLT3 as a promising strategy to overcome resistance in tumor cells refractory to FLT3 inhibitors.
About the authors
Ya. V. Lomovskaya
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia
M. I. Kobyakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia
K. S. Krasnov
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Clinical and Experimental Lymphology, Branch of ICG, Siberian Branch of the Russian Academy of Sciences
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia; Novosibirsk, 630060 Russia
A. I. Lomovsky
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia
E. I. Mescheryakova
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences; Institute of Cell Biophysics, Russian Academy of Sciences
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia; Pushchino, 142290 Russia
R. S. Fadeev
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Author for correspondence.
Email: yannalomovskaya@gmail.com
Pushchino, 142290 Russia
References
- Turkalj S., Radtke F.A., Vyas P. 2023. An overview of targeted therapies in acute myeloid leukemia. Hemasphere. 7, E914. https://doi.org/10.1097/HS9.0000000000000914
- Cortes J. 2024. Quizartinib: A potent and selective FLT3 inhibitor for the treatment of patients with FLT3-ITD–positive AML. J. Hematol. Oncol. 17, 111. https://doi.org/10.1186/s13045-024-01617-7
- Montesinos P., Cheong J.W., Daver N., Fathi A.T., Levis M.J., Luger S., Miyamoto T., Oliva E.N., Perl A.E., Récher C., Schlenk R.F., Wang J., Zeidan A.M., Liu L, Duong Y., Imadalou K., Alexis K., Nahar A., Burns K., Erba H.P. 2024. Trial in progress: The phase 3, randomized, double-blind, placebo-controlled QuANTUM-Wild study of Quizartinib in combination with chemotherapy and as single-agent maintenance in newly diagnosed, FLT3-ITD-negative acute myeloid leukemia. Blood. 144 (Suppl. 1), 1504. https://doi.org/10.1182/blood-2024-205101
- Nepomuceno R., Rooks A.M., Gardner M., Armstrong R. 2014. Differential inhibition of FLT3-ITD, FLT3-WT, and KIT by Quizartinib as assessed by modified PIA Assay. Blood. 124 (21), 951. https://doi.org/10.1182/blood.V124.21.951.951
- Carranza-Aranda A.S., Jave-Suárez L.F., Flores-Hernández F.Y., Huizar-López M.D.R., Herrera-Rodríguez S.E., Santerre A. 2024. In silico and in vitro study of FLT3 inhibitors and their application in acute myeloid leukemia. Mol Med Rep. 30 (6), 229. https://doi.org/10.3892/mmr.2024.13353
- Lomovskaya Y.V., Kobyakova M.I., Senotov A.S. Lomovsky A.I., Minaychev V.V., Fadeeva I.S., Shtatnova D.Y., Krasnov, K.S., Zvyagina A.I., Akatov V.S., Fadeev R.S. 2022. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules. 12, 150. https://doi.org/10.3390/biom12020150
- Ломовская Я.В., Кобякова М.И., Сенотов А.С., Фадеева И.С., Ломовский А.И., Краснов К.С., Штатнова Д.Ю., Акатов В.С., Фадеев Р.С. 2022. Миелоидная дифференцировка повышает устойчивость лейкозных клеток к TRAIL-индуцированной гибели путем снижения экспрессии рецепторов DR4 и DR5. Биол. мембраны. 39 (6), 457–473. https://doi.org/10.31857/S023347552206010X.
- Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102 (43), 15545–15550. https://doi.org/10.1073/pnas.0506580102
- Fang Z., Liu X., Peltz G. 2023. GSEApy: A comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics. 39 (1), btac757. https://doi.org/10.1093/bioinformatics/btac757
- Chin C.H., Chen S.H., Wu H.H., Ho C.W., Ko M.T., Lin C.Y. 2014. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 (4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
- Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., Fridman W.H., Pagès F., Trajanoski Z., Galon J. 2009. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 25(8), 1091–1093. https://doi.org/10.1093/bioinformatics/btp101
- Benjamini Y., Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple Testing. J. R. Statist. Soc. Series B. 57, 289–300.
- Omage S., Wallert M., Lorkowski S. 2024. Cell culture of THP-1 monocytes and differentiation into macrophages with PMA v1. Protocols.io. 98576. https://doi.org/10.17504/protocols.io.5jyl8255dl2w/v1
- Ломовская Я.В., Краснов К.С., Кобякова М.И., Колотова А.А., Ермаков А.М., Сенотов А.С., Фадеева И.С., Фетисова Е.И., Ломовский А.И., Звягина А.И., Акатов В.С., Фадеев Р.С. 2024. Исследование активации сигнальных путей в TRAIL-резистентных макрофагоподобных клетках острого миелоидного лейкоза. Acta Naturae. 16 (1), 48–58. https://doi.org/10.32607/actanaturae.27317
- Tsapogas P., Mooney C.J., Brown G., Rolink A. 2017. The cytokine Flt3-ligand in normal and malignant hematopoiesis. Int. J. Mol. Sci. 18 (6), 1115. https://doi.org/10.3390/ijms18061115
- Kikushige Y., Yoshimoto G., Miyamoto T., Iino T., Mori Y., Iwasaki H., Niiro H., Takenaka K., Nagafuji K., Harada M., Ishikawa F., Akashi K. 2008. Human Flt3 is expressed at the hematopoietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J. Immunol. 180 (11), 7358–7367. https://doi.org/10.4049/jimmunol.180.11.7358
- Ruglioni M., Crucitta S., Luculli G.I., Tancredi G., Del Giudice M.L., Mechelli S., Galimberti S., Danesi R., Del Re M. 2024. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit. Rev. Oncol. Hematol. 201, 104424. https://doi.org/10.1016/j.critrevonc.2024.104424
- Reiterer G., Yen A. 2007. Platelet-derived growth factor receptor regulates myeloid and monocytic differentiation of HL-60 cells. Cancer. Res. 67 (16), 7765–7772. https://doi.org/10.1158/0008-5472.CAN-07-0014
- Dong M., Blobe G.C. 2006. Role of transforming growth factor-beta in hematologic malignancies. Blood. 107 (12), 4589–4596. https://doi.org/10.1182/blood-2005-10-4169
- Qiu T., Qi X., Cen J., Chen Z. 2012. Rap1GAP alters leukemia cell differentiation, apoptosis and invasion in vitro. Oncol. Rep. 28 (2), 622–628. https://doi.org/10.3892/or.2012.1825
Supplementary files

