Application of artificial intelligence to improve the effectiveness of assisted reproductive technology programs
- Authors: Gromenko D.D.1, Yashchuk A.G.1, Gromenko I.D.2, Nasyrova S.F.1
-
Affiliations:
- Bashkir State Medical University, Ministry of Health of Russia
- Medical Center “Family”
- Issue: Vol 36, No 9 (2025)
- Pages: 12-17
- Section: Lecture
- URL: https://journal-vniispk.ru/0236-3054/article/view/315145
- DOI: https://doi.org/10.29296/25877305-2025-09-02
- ID: 315145
Cite item
Abstract
Infertility affects up to 17.5% of couples of reproductive age, which significantly increases the demand for assisted reproductive technologies (ART). Despite various transformations and modernisation of programmes, the live birth rate with in vitro fertilisation (IVF) remains low, resulting in the need for several protocols to achieve live births. An important factor in the success of IVF is the qualification of specialists, but despite its high level, the human factor and a certain amount of subjectivity in the work of reproductologists and embryologists cannot be avoided. Artificial Intelligence (AI) offers significant opportunities to improve various aspects of IVF, for example, AI models can accurately predict hormone doses, and automate ultrasound monitoring, reducing examination time. AI also improves sperm selection for intracytoplasmic injection and helps select embryos with the best chance of implantation, improving accuracy and reducing subjective evaluation. In addition, AI can play an important role in training professionals, improving their skills and increasing the accuracy of decision-making. The introduction of AI into clinical practice is a promising area for improving IVF outcomes.
Full Text
##article.viewOnOriginalSite##About the authors
D. D. Gromenko
Bashkir State Medical University, Ministry of Health of Russia
Author for correspondence.
Email: dasha.gromenko@mail.ru
ORCID iD: 0000-0001-5638-1779
SPIN-code: 4628-0186
Russian Federation, Ufa
A. G. Yashchuk
Bashkir State Medical University, Ministry of Health of Russia
Email: dasha.gromenko@mail.ru
ORCID iD: 0000-0003-2645-1662
SPIN-code: 2607-9150
Professor, MD
Russian Federation, UfaI. D. Gromenko
Medical Center “Family”
Email: dasha.gromenko@mail.ru
ORCID iD: 0000-0001-8582-660X
SPIN-code: 1500-2105
Russian Federation, Ufa
S. F. Nasyrova
Bashkir State Medical University, Ministry of Health of Russia
Email: dasha.gromenko@mail.ru
ORCID iD: 0000-0002-2313-7232
SPIN-code: 7260-5293
Associate Professor, Candidate of Medical Sciences
Russian Federation, UfaReferences
- Cox C.M., Thoma M.E., Tchangalova N. еt al. Infertility prevalence and the methods of estimation from 1990 to 2021: a systematic review and meta-analysis. Hum Reprod Open. 2022; 2022 (4): hoac051. doi: 10.1093/hropen/hoac051
- Регистр вспомогательных репродуктивных технологий. Отчет за 2022 год. Российская ассоциация репродукции человека [Registry of Assisted Reproductive Technologies. Report for 2022. Russian Association of Human Reproduction (in Russ.)].
- Chambers GM., Dyer S., Zegers-Hochschild F. et al. International Committee for Monitoring Assisted Reproductive Technologies world report: assisted reproductive technology, 2014. Hum Reprod. 2021; 36 (11): 2921–34. doi: 10.1093/humrep/deab198
- Ratna M.B., Bhattacharya S., McLernon D.J. External validation of models for predicting cumulative live birth over multiple complete cycles of IVF treatment [published correction appears in Hum Reprod. 2024 May 10: deae099. doi: 10.1093/humrep/deae099]. Hum Reprod. 2023; 38 (10): 1998–2010. doi: 10.1093/humrep/dead165
- Storr A., Venetis CA., Cooke S. Inter-observer and intra-observer agreement between embryologists during selection of a single Day 5 embryo for transfer: a multicenter study. Hum Reprod. 2017; 32 (2): 307–14. doi: 10.1093/humrep/dew330
- Khosravi P., Kazemi E., Zhan Q. et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019; 2: 21. doi: 10.1038/s41746-019-0096-y
- Trolice MP., Curchoe C., Quaas AM. Artificial intelligence-the future is now. J Assist Reprod Genet. 2021; 38 (7): 1607–12. doi: 10.1007/s10815-021-02272-4
- Wang R., Pan W., Jin L. et al. Artificial intelligence in reproductive medicine. Reproduction. 2019; 158 (4): R139-R154. doi: 10.1530/REP-18-0523
- Селиверстов П.В., Гриневич В.Б., Шаповалов В.В. и др. Повышение эффективности скрининга хронических неинфекционных заболеваний с использованием технологий на основе искусственного интеллекта. Лечащий врач. 2024; 27 (4): 97–104 [Seliverstov P.V., Grinevich V.B., Shapovalov V.V. et al. Improving the effectiveness of screening for chronic noncommunicable diseases using artificial intelligence-based technologies. Lechaschi Vrach. 2024; 27 (4): 97–104 (in Russ.)]. doi: 10.51793/OS.2024.27.4.014
- Клинические рекомендации «Женское бесплодие», 2024 [Clinical Guidelines “Female Infertility”, 2024 (in Russ.)].
- Fanton M., Nutting V., Rothman A. et al. An interpretable machine learning model for individualized gonadotrophin starting dose selection during ovarian stimulation. Reprod Biomed Online. 2022; 45 (6): 1152–9. doi: 10.1016/j.rbmo.2022.07.010
- Kuokkanen S., Pal L. Follicle-stimulating hormone (and luteinizing hormone) in ovarian stimulation: Does the dose matter for cycle success? Fertil Steril. 2023; 119 (2): 166–9. doi: 10.1016/j.fertnstert.2022.12.019
- Correa N., Cerquides J., Arcos J.L. et al. Supporting first FSH dosage for ovarian stimulation with machine learning. Reprod Biomed Online. 2022; 45 (5): 1039–45. doi: 10.1016/j.rbmo.2022.06.010
- Hariton E., Pavlovic Z., Fanton M. et al. Applications of artificial intelligence in ovarian stimulation: a tool for improving efficiency and outcomes. Fertil Steril. 2023; 120 (1): 8–16. doi: 10.1016/j.fertnstert.2023.05.148
- Robertson I., Chmiel F.P., Cheong Y. Streamlining follicular monitoring during controlled ovarian stimulation: a data-driven approach to efficient IVF care in the new era of social distancing. Hum Reprod. 2021; 36 (1): 99–106. doi: 10.1093/humrep/deaa251
- Mathur P., Kakwani K., Diplav et al. Deep Learning based Quantification of Ovary and Follicles using 3D Transvaginal Ultrasound in Assisted Reproduction. Annu Int Conf IEEE Eng Med Biol Soc. 2020; 2020: 2109–12. doi: 10.1109/EMBC44109.2020.9176703
- Noor N., Vignarajan C.P., Malhotra N. et al. Three-Dimensional Automated Volume Calculation (Sonography-Based Automated Volume Count) versus Two-Dimensional Manual Ultrasonography for Follicular Tracking and Oocyte Retrieval in Women Undergoing in vitro Fertilization-Embryo Transfer: A Randomized Controlled Trial. J Hum Reprod Sci. 2020; 13 (4): 296–302. doi: 10.4103/jhrs.JHRS_91_20
- Lersten I.L., Grau L., Jahandideh S. et al. High estradiol levels in fresh embryo transfer cycles are not associated with detrimental impact on birth outcomes. J Assist Reprod Genet. 2024; 41 (4): 893–902. doi: 10.1007/s10815-024-03062-4
- Hariton E., Chi E.A., Chi G. et al. A machine learning algorithm can optimize the day of trigger to improve in vitro fertilization outcomes. Fertil Steril. 2021; 116 (5): 1227–35. doi: 10.1016/j.fertnstert.2021.06.018
- Fanton M., Nutting V., Solano F. et al. An interpretable machine learning model for predicting the optimal day of trigger during ovarian stimulation. Fertil Steril. 2022; 118 (1): 101–8. doi: 10.1016/j.fertnstert.2022.04.003
- Polyzos N.P., Drakopoulos P., Parra J. et al. Cumulative live birth rates according to the number of oocytes retrieved after the first ovarian stimulation for in vitro fertilization/intracytoplasmic sperm injection: a multicenter multinational analysis including ~15,000 women. Fertil Steril. 2018; 110 (4): 661-670.e1. doi: 10.1016/j.fertnstert.2018.04.039
- Fanton M., Cho J.H., Baker V.L. et al. A higher number of oocytes retrieved is associated with an increase in fertilized oocytes, blastocysts, and cumulative live birth rates. Fertil Steril. 2023; 119 (5): 762–9. doi: 10.1016/j.fertnstert.2023.01.001
- World Health Organization. Laboratory manual for the examination and processing of human semen. 6th ed. WHO, 2021. URL: https://apps.who.int/iris/handle/10665/343208
- Amann R.P., Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014; 81 (1): 5-17.e1-3. doi: 10.1016/j.theriogenology.2013.09.004
- Goodson S.G., White S., Stevans A.M. et al. CASAnova: a multiclass support vector machine model for the classification of human sperm motility patterns. Biol Reprod. 2017; 97 (5): 698–708. doi: 10.1093/biolre/iox120
- Somasundaram D., Nirmala M. Faster region convolutional neural network and semen tracking algorithm for sperm analysis. Comput Methods Programs Biomed. 2021; 200: 105918. doi: 10.1016/j.cmpb.2020.105918
- Dai C., Zhang Z., Jahangiri S. et al. Automated motility and morphology measurement of live spermatozoa. Andrology. 2021; 9 (4): 1205–13. doi: 10.1111/andr.13002
- Montjean D., Godin Pagé M.H., Pacios C. et al. Automated Single-Sperm Selection Software (SiD) during ICSI: A Prospective Sibling Oocyte Evaluation. Med Sci (Basel). 2024; 12 (2): 19. doi: 10.3390/medsci12020019
- Методические рекомендации «Оценка ооцитов и эмбрионов в лаборатории ВРТ». Российская Ассоциация Репродукции Человека, Секция «Клиническая эмбриология», 2021 [Methodological recommendations “Evaluation of oocytes and embryos in the laboratory of assisted reproductive technologies”. Russian Association of Human Reproduction, Section “Clinical Embryology”, 2021 (in Russ.)].
- Bormann C.L., Thirumalaraju P., Kanakasabapathy M.K. et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertil Steril. 2020; 113 (4): 781-787.e1. doi: 10.1016/j.fertnstert.2019.12.004
- Fordham D.E., Rosentraub D., Polsky A.L. et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity? Hum Reprod. 2022; 37 (10): 2275–90. doi: 10.1093/humrep/deac171
- Bormann C.L., Kanakasabapathy M.K., Thirumalaraju P. et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation. Elife. 2020; 9: e55301. doi: 10.7554/eLife.55301
- Farias A.F., Chavez-Badiola A., Mendizabal-Ruiz G. et al. Automated identification of blastocyst regions at different development stages. Sci Rep. 2023; 13 (1): 15. doi: 10.1038/s41598-022-26386-6
- Diakiw S.M., Hall J.M.M., VerMilyea M. et al. An artificial intelligence model correlated with morphological and genetic features of blastocyst quality improves ranking of viable embryos. Reprod Biomed Online. 2022; 45 (6): 1105–17. doi: 10.1016/j.rbmo.2022.07.018
- Fitz V.W., Kanakasabapathy M.K., Thirumalaraju P. et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm. J Assist Reprod Genet. 2021; 38 (10): 2663–70. doi: 10.1007/s10815-021-02318-7
- Cherouveim P., Jiang V.S., Kanakasabapathy M.K. et al. Quality assurance (QA) for monitoring the performance of assisted reproductive technology (ART) staff using artificial intelligence (AI). J Assist Reprod Genet. 2023; 40 (2): 241–9. doi: 10.1007/s10815-022-02649-z
Supplementary files
