BCG vaccination. Is it double protection?

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Since the beginning of the COVID-19 pandemic, there has been an inference as to the possible protective role of BCG vaccine against the novel coronavirus infection. The review considers these assumptions and also presents the vaccination rules that are important in the practice of physicians. Particular emphasis is placed on the issues that are important in the practical activities of a pediatrician. Whether there is a relationship between COVID-19 and BCG vaccination remains open and is not argued in this review.

Sobre autores

E. Amosova

Samara State Medical University, Ministry of Health of Russia

Autor responsável pela correspondência
Email: borodulinbe@yandex.ru

Candidate of Medical Sciences

Rússia

O. Khramkova

Samara State Medical University, Ministry of Health of Russia

Email: borodulinbe@yandex.ru
Rússia

O. Kozlova

“Reaviz” Medical University

Email: borodulinbe@yandex.ru

Candidate of Medical Sciences

Rússia, Samara

Bibliografia

  1. Pleskovskaya A.S., Ganeeva M.D., Tsareva A.V. et al. BCG vaccination: immunological mechanisms of confronting COVID-19. Tekhnologii zhivykh sistem. 2020; 17 (5): 112–28 (in Russ.). doi: 10.18127/j20700997-202005-08
  2. Lyadova I.V., Staricov A.A. COVID-19 and BCG vaccine: is there a link? Russian Journal of Infection and Immunity = Infektsiya i immunitet. 2020; 10 (3): 459–68 (in Russ.). doi: 10.15789/2220-7619-CAB-1472
  3. Zavitaeva A.P., Minina O.S. COVID-19 i vaktsinatsiya BTsZh: est' li svyaz'? Forcipe. 2022; 5 (S3): 497 (in Russ.).
  4. Patella V. et al. Could anti-tubercular vaccination protect against COVID-19 infection? Allergy. 2021; 76 (3): 942–5. doi: 10.1111/all.14443
  5. Gursel M., Gursel I. Is global BCG vaccination coverage relevant to the progression of SARS-CoV-2 pandemic? Med Hypotheses. 2020: 109707. doi: 10.1016/j.mehy.2020.109707
  6. Albitskiy V.Yu., Serebryaniy R.S., Sher S.A. et al. To history of the struggle against tuberculosis in children of early age in the USSR (according to data of cities of Moscow and Samara). Rossiyskiy Pediatricheskiy Zhurnal = Russian Pediatric Journal. 2017; 20 (1): 58–64 (in Russ.). doi: 10.18821/1560-9561-2017-20(1)-58-64
  7. Sirodjidinova U.Yu., Bobokhojaev O.I., Pirov K.I. et al. The influence of BCG vaccination on the structure of clinical forms of tuberculosis in children from the foci of infection and from unspecified contact for tuberculosis. Vestnik Avitsenny = Avicenna Bulletin. 2018; 20 (2-3): 281–6. (in Russ.). doi: 10.25005/2074-0581-2018-20-2-3-281-286
  8. Borodulin B.E., Borodulina E.A. Phthisiology. М., 2021 (in Russ.).
  9. Ovsyankina E.S., Yukhimenko N.V., Gubkina M.F. et al. Immunization of children using BCG vaccine – the past and the present. To the 100-year anniversary of BCG vaccination. Vestnik TsNIIT. 2021; 2: 5–18 (in Russ.). doi: 10.7868/S2587667821020011
  10. Gechas A.A., Shalin V.V., Saraeva A.K. et al. Postcinal complications of vaccination against tuberculosis in children. Modern problems of science and education. 2021; 1: 46 (in Russ.).
  11. Nikonenko B.V., Logunova N.N., Sterzhanova N.V. et al. Efficacy of BCG vaccination depends on host genetics. Bulletin of Experimental Biology and Medicine. 2021; 171 (4): 453–7 (in Russ.). doi: 10.47056/0365-9615-2021-171-4-453-457
  12. Rakhmanova Zh.Z., Paina O.V., Yudinceva O.S. et al. Complicated BCG vaccination during chemotherapy in infant acute leukemia patients. Cell Ther Transplant. 2022; 11 (2): 54–7. doi: 10.18620/ctt-1866-8836-2022-11-2-54-57
  13. Korol' O.I., Lozovskaya M.E., Klochkova L.V. et al. Diagnostika, klinika, lechenie tuberkuleza u detei i podrostkov. Uchebnik. SPb, 2003 (in Russ.).
  14. Stepanov G.A. Kharakteristika oslozhnenii na privivki BTsZh I BTsZh-M v Sankt-Peterburge. Medicine: Theory and Practice. 2019; 4 (S): 527–8 (in Russ.).
  15. Sevostyanova T.A., Аksenova V.A., Kudlay D.A. Immune status of children with complications of BCG/BCG-M vaccination. Tuberculosis and Lung Diseases. 2020; 98 (1): 27–34 (in Russ.). doi: 10.21292/2075-1230-2020-98-1-27-34
  16. Borodulina E., Amosova E., Borodulin B. et al. Diagnostics with tuberculin in children in modern conditions. Current Pediatrics. 2010; 9 (1): 70–4 (in Russ.).
  17. Borodulina E.A., Borodulin B.E., Amosova E.A. et al. Tuberculin tests and their comparative assessment. Tuberculosis and Lung Diseases. 2010; 87 (8): 13–7 (in Russ.).
  18. Slogotskaya L.V., Litvinov V., Ovsyankina E. et al. Results of QuantiFERON-TB Gold in-tube and skin testing with recombinant proteins CFP-10-ESAT-6 in children and adolescents with TB or latent TB infection. Paediatric Respiratory Reviews. 2013; 14 (2): S565.
  19. Aksenova V.A., Klevno N.I., Baryshnikova L.A. et al. Metodicheskie rekomendatsii: «Vyyavlenie tuberkuleza i taktika dispansernogo nablyudeniya za litsami iz grupp riska s ispol'zovaniem rekombinantnogo tuberkuleznogo allergena – Diaskintest®. M.: Pervyi MGMU im. I.M. Sechenova, 2011. 12 р. (in Russ.).
  20. Slogotskaya L.V., Bogorodskaya E.M., Senchikhina O.Yu. et al. Formation of risk groups for tuberculosis disease in various immunological methods of the examination of children population. Russian Pediatric Journal. 2017; 20 (4): 207–13 (in Russ.). doi: 10.18821/1560-9561-2017-20-4-207-213
  21. Aksenova V.A., Levi D.T., Aleksandrova N.V. et al. Pediatric TB: Modern Methods for Prevention and Early Diagnostics. Doctor.Ru. 2017; 15 (144): 9–15 (in Russ.).
  22. Shovkun L.A., Aksenova V.A., Kudlai D.A. et al. The role of immunological tests in the diagnosis of tuberculosis infection in children with juvenile idiopathic arthritis (JIA). Eur Respir J. Suppl. 2018; 52 (S62): PA2733.
  23. Borodulina E., Kudlay D., Vlasova B. et al. Potential use of in vitro tests in the diagnosis of tuberculosis (literature review). Medical Alliance. 2021; 9 (2): 15–21. doi: 10.36422/23076348-2021-9-2-15-21
  24. Eremenko E.P., Borodulina E.A., Sergeeva I.A. et al. Recombinant in vitro test T-SPOT.TB as a screening method for early diagnosis of tuberculosis infection. Tuberculosis and Lung Diseases. 2020; 98 (4): 48–52 (in Russ.). doi: 10.21292/2075-1230-2020-98-4-48-52
  25. Aaby P., Kollmann T., Benn C. Nonspecific effects of neonatal and infant vaccination: public-health, immunological and conceptual challenges. Nat Immunol. 2014; 15: 895–9. doi: 10.1038/ni.2961
  26. Biering-Sоrensen S., Aaby P., Lund N. et al. Early BCG-Denmark and neonatal mortality among infants weighing <2500 g: a randomized controlled trial. Clin Infect Dis. 2017; 65 (7): 1183–90. doi: 10.1093/cid/cix525
  27. Nankabirwa V. et al. Child survival and BCG vaccination: a community based prospective cohort study in Uganda. BMC Public Health. 2015; 15: 175. doi: 10.1186/s12889-015-1497-8
  28. Shann F. Nonspecific effects of vaccines and the reduction of mortality in children. Clin Ther. 2013; 35 (2): 109–14. doi: 10.1016/j.clinthera.2013.01.007
  29. Hollm-Delgado M.G., Stuart E.A., Black R.E. Acute lower respiratory infection among Bacille Calmette-Guerin (BCG)-vaccinated children. Pediatrics. 2014; 133 (1): 73–81. doi: 10.1542/peds.2013-2218
  30. Wardhana, Datau E.A., Sultana A. et al. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med. Indones. 2011; 43 (3): 185–90.
  31. Hippmann G., Wekkeli M., Rosenkranz A.R. et al. Nonspecific immune stimulation with BCG in Herpes simplex recidivans. Follow-up 5 to 10 years after BCG vaccination. Wien Klin Wochenschr. 1992; 104 (7): 200–4.
  32. Shvartz Y.S., Stavitskaya N.V., Kudlay D.A. BCG vaccination as protection from COVID-19: epidemiological and molecular biological aspects. Tuberculosis and Lung Diseases. 2020; 98 (5): 6–14 (in Russ.). doi: 10.21292/2075-1230-2020-98-5-6-14
  33. Moorlag S.J.C.F.M., Arts R.J.W., van Crevel R. et al. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019; 25 (12): 1473–8. doi: 10.1016/j.cmi.2019.04.020
  34. Netea M.G., Dominguez-Andres J., Barreiro L.B. et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020; 20 (6): 375–88. doi: 10.1038/s41577-020-0285-6
  35. Netea M.G., Joosten L.A., Latz E. et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016; 352 (6284): aaf1098. doi: 10.1126/science.aaf1098
  36. Netea M.G., Quintin J., van der Meer J.W. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011; 9 (5): 355–61. doi: 10.1016/j.chom.2011.04.006

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».