Regulation of Stem Cell Functions Through Cyclic Adenosine Monophosphate (сAMP) Signaling: Mechanisms and Perspectives
- Authors: Usachev V.A.1, Tyurin-Kuzmin P.A.1, Zinoveva A.A.1, Zubarev I.V.2, Kulebyakin K.Y.1, Vorontsova M.V.1, Tkachuk V.A.1
-
Affiliations:
- Lomonosov Moscow State University
- Moscow Institute of Physics and Technology
- Issue: Vol 56, No 4 (2025)
- Pages: 34-53
- Section: Articles
- URL: https://journal-vniispk.ru/0301-1798/article/view/368083
- DOI: https://doi.org/10.7868/S3034611825040035
- ID: 368083
Cite item
Abstract
Keywords
About the authors
V. A. Usachev
Lomonosov Moscow State University
Email: usachjov-vova@mail.ru
ORCID iD: 0000-0003-1564-0644
postgraduate student Moscow
P. A. Tyurin-Kuzmin
Lomonosov Moscow State University
Email: tyurinkuzminpa@my.msu.ru
ORCID iD: 0000-0002-1901-1637
Dr. Sci. In Biology, Associate professor Moscow
A. A. Zinoveva
Lomonosov Moscow State University
Email: zinovevaanna356@gmail.com
ORCID iD: 0009-0007-3068-1678
postgraduate student Moscow
I. V. Zubarev
Moscow Institute of Physics and Technology
Email: ilyamitozubarev@gmail.com
ORCID iD: 0000-0002-7827-498X
PhD in Biology, senior scientific fellow, head of laboratory Dolgoprudny
K. Yu. Kulebyakin
Lomonosov Moscow State University
Email: konstantin-kuleb@mail.ru
ORCID iD: 0000-0001-6954-5787
PhD in Biology, Associate professor Moscow
M. V. Vorontsova
Lomonosov Moscow State University
Email: maria.v.vorontsova@mail.ru
ORCID iD: 0000-0002-9124-294X
PhD, MD, head of Laboratory of Molecular Endocrinology Moscow
V. A. Tkachuk
Lomonosov Moscow State University
Email: tkachuk@fbm.msu.ru
ORCID iD: 0000-0002-7492-747
Dr. Sci. In Biology, RAS academician, director Moscow
References
- Abdel-Halim S.M. et al. Increased Plasma Levels of Adenylate Cyclase 8 and cAMP Are Associated with Obesity and Type 2 Diabetes: Results from a Cross-Sectional Study. Biology. 2020. Vol. 9. No. 9. P. 244. https://doi.org/10.3390/biology9090244
- Bayewitch M.L. et al. Inhibition of adenylyl cyclase isoforms V and Vol. by various Gβγ subunits. The FASEB Journal. 1998. Vol. 12. No. 11. P. 1019–1025. https://doi.org/10.1096/fasebj.12.11.1019
- Beazely M.A., Watts V.J. Regulatory properties of adenylate cyclases type 5 and 6: A progress report. European Journal of Pharmacology. 2006. Vol. 535. P. 1–12. https://doi.org/10.1016/j.ejphar.2006.01.054
- Boguslawski G. et al. Activation of Osteocalcin Transcription Involves Interaction of Protein Kinase A- and Protein Kinase C-dependent Pathways. Journal of Biological Chemistry. 2000. Vol. 275. No. 2. P. 999–1006. https://doi.org/10.1074/jbc.275.2.999
- Boyce A.M., Collins M.T. Fibrous dysplasia/McCune-Albright syndrome: a rare, mosaic disease of Gα s activation. Endocrine reviews. 2020. Vol. 41. No. 2. P. 345–370. https://doi.org/10.1210/endrev/bnz011
- Brand T. The Popeye Domain-Containing Gene Family. CBB. 2005. Vol. 43. No. 1. P. 95–104. https://doi.org/10.1385/CBB:43:1:095
- Bundey R.A., Insel P.A. Adenylyl Cyclase 6 Overexpression Decreases the Permeability of Endothelial Monolayers via Preferential Enhancement of Prostacyclin Receptor Function. Molecular Pharmacology November. 2006. Vol. 70. No. 5. P. 1700–1707. https://doi.org/10.1124/mol.106.028035
- Carroll S.H., Ravid K. Differentiation of mesenchymal stem cells to osteoblasts and chondrocytes: a focus on adenosine receptors. Expert Rev. Mol. Med. 2013. Vol. 15. P. e1. https://doi.org/10.1017/erm.2013.2
- Chan W.C.W., Tan Z., To M.K.T., Chan D. Regulation and Role of Transcription Factors in Osteogenesis. IJMS. 2021. Vol. 22. No. 11. P. 5445. https://doi.org/10.3390/ijms22115445
- Chen B., Lin T., Yang X., Li Y., Xie D., Cui H. Intermittent parathyroid hormone (1–34) application regulates cAMP-response element binding protein activity to promote the proliferation and osteogenic differentiation of bone mesenchymal stromal cells, via the cAMP/PKA signaling pathway. Experimental and Therapeutic Medicine. 2016. V. 11. No. 6. P. 2399–2406. https://doi.org/10.3892/etm.2016.3177
- Chen H.Y., Liu Q., Salter A.M., Lomax M.A. Synergism between cAMP and PPAR γ Signalling in the Initiation of UCP1 Gene Expression in HIB1B Brown Adipocytes. PPAR Research. 2013. Vol. 2013. P. 1–8. https://doi.org/10.1155/2013/476049
- De Rooij J. et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998. Vol. 396. No. 6710. P. 474–477. https://doi.org/10.1038/24884
- Dessauer C.W. Adenylyl Cyclase–A-kinase Anchoring Protein Complexes: The Next Dimension in cAMP Signaling. Mol. Pharmacol. 2009. Vol. 76. No. 5. P. 935–941. https://doi.org/10.1124/mol.109.059345
- Dessauer C.W., Watts V.J., Ostrom R.S., Conti M., Dove S., Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol. Rev. 2017. Vol. 69. No. 2. P. 93–139. https://doi.org/10.1124/pr.116.013078
- Devasani K., Yao Y. Expression and functions of adenylyl cyclases in the CNS. Fluids and Barriers of the CNS. 2022. Vol. 19. No. 1. P. 23. https://doi.org/10.1186/s12987-022-00322-2
- Fan Q. et al. The CREB–Smad6–Runx2 axis contributes to the impaired osteogenesis potential of bone marrow stromal cells in fibrous dysplasia of bone. The Journal of Pathology. 2012. Vol. 228. No. 1. P. 45–55. https://doi.org/10.1002/path.4033
- Farmer S.R. Transcriptional control of adipocyte formation. Cell Metabolism. 2006. Vol. 4. No. 4. P. 263–273. https://doi.org/10.1016/j.cmet.2006.07.001
- Fesenko E.E., Kolesnikov S.S., Lyubarsky A.L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature. 1985. Vol. 313. No. 6000. P. 310–313. https://doi.org/10.1038/313310a0
- Fritz A.L., Adil M.M., Mao S.R., Schaffer D.V. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Molecular Therapy. 2015. Vol. 23. No. 5. P. 952–963. https://doi.org/10.1038/mt.2015.28
- Gabrielli M., Martini C.N., Brandani J.N., Iustman L.J.R., Romero D.G., Vila M.D.C. Exchange protein activated by cyclic AMP is involved in the regulation of adipogenic genes during 3T3‐L1 fibroblasts differentiation. Dev. Growth Differ. 2014. Vol. 56. No. 2. P. 143–151. https://doi.org/10.1111/dgd.12114
- Gancedo J.M. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol. Rev. Camb. Philos. Soc. 2013. Vol. 88. No. 3. P. 645–668. https://doi.org/10.1111/brv.12020
- Grarup N. et al. Loss-of-function variants in ADCY3 increase risk of obesity and type 2 diabetes. Nat. Genet. 2018. Vol. 50. No. 2. P. 172–174. https://doi.org/10.1038/s41588-017-0022-7
- Hanoune J., Defer N. Regulation and Role of Adenylyl Cyclase Isoforms. Annu. Rev. Pharmacol. Toxicol. 2001. V. 41. No. 1. P. 145–174. https://doi.org/10.1146/annurev.pharmtox.41.1.145
- He S., Choi Y.H., Choi J., Yeo C., Chun C., Lee K.Y. Protein Kinase A Regulates the Osteogenic Activity of Osterix. J. of Cellular Biochemistry. 2014. Vol. 115. No. 10. P. 1808–1815. https://doi.org/10.1002/jcb.24851
- Herzig S., Hedrick S., Morantte I., Koo S.-H., Galimi F., Montminy M. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-g. Nature. 2003. Vol. 426. P. 190–193. https://doi.org/10.1038/nature02110
- Hirota K., Hirashima T., Horikawa K., Yasoda A., Matsuda M. C-type Natriuretic Peptide–induced PKA Activation Promotes Endochondral Bone Formation in Hypertrophic Chondrocytes. Endocrinology. 2022. Vol. 163. No. 3. P. bqac005. https://doi.org/10.1210/endocr/bqac005
- Ho W.C., Greene R.M., Shanfeld J., Davidovitch Z. Cyclic nucleotides during chondrogenesis: Concentration and distribution in vivo and in vitro. Journal of Experimental Zoology. 1982. Vol. 224. No. 3. P. 321–330. https://doi.org/10.1002/jez.1402240305
- Hong S.H.H., Lu X., Nanes M.S., Mitchell J. Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts. Journal of Molecular Endocrinology. 2009. Vol. 43. No. 5. P. 197–207. https://doi.org/10.1677/JME-09-0012
- Huang W., Zhou X., Lefebvre V., Crombrugghe B.D. Phosphorylation of SOX9 by Cyclic AMP-Dependent Protein Kinase A Enhances SOX9’s Ability To Transactivate a Col2a1 Chondrocyte-Specific Enhancer. MOL. CELL. BIOL. 2000. Vol. 20. P. 149–158. https://doi.org/10.1128/MCB.20.11.4149-4158.2000
- Jarnaess E., Taskén K. Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochemical Society Transactions. 2007. Vol. 35. No. 5. P. 931–937. https://doi.org/10.1042/BST0350931
- Ji Z. Epac not PKA catalytic subunit is required for 3T3-L1 preadipocyte differentiation. Front. Biosci. 2010. Vol. E2. No. 2. P. 392–398. https://doi.org/10.2741/e99
- Jia B. et al. Activation of Protein Kinase A and Exchange Protein Directly Activated by cAMP Promotes Adipocyte Differentiation of Human Mesenchymal Stem Cells. PLoS ONE. 2012. Vol. 7. No. 3. P. e34114. https://doi.org/10.1371/journal.pone.0034114
- Juhász T. et al. Mechanical loading stimulates chondrogenesis via the PKA/CREB-Sox9 and PP2A pathways in chicken micromass cultures. Cellular Signalling. 2014. Vol. 26. No. 3. P. 468–482. https://doi.org/10.1016/j.cellsig.2013.12.001
- Kao R., Lu W., Louie A., Nissenson R. Cyclic AMP signaling in bone marrow stromal cells has reciprocal effects on the ability of mesenchymal stem cells to differentiate into mature osteoblasts versus mature adipocytes. Endocrine. 2012. Vol. 42. P. 622–636. https://doi.org/10.1007/s12020-012-9717-9
- Khani S. et al. Cold-induced expression of a truncated Adenylyl Cyclase 3 acts as rheostat to brown fat function. Nature Metabolism. 2024. Vol. 6. P. 1053–1075. https://doi.org/10.1038/s42255-024-01033-8
- Kim J. et al. An activator of the cAMP/PKA/CREB pathway promotes osteogenesis from human mesenchymal stem cells. Journal Cellular Physiology. 2013. Vol. 228. No. 3. P. 617–626. https://doi.org/10.1002/jcp.24171
- Kim J.S., Hong Y.J., Choi H.W., Choi S., Do J.T. Protein Kinase A Signaling Is Inhibitory for Reprogramming into Pluripotent Stem Cells. Stem Cells and Development. 2016. Vol. 25. No. 5. P. 378–385. https://doi.org/10.1089/scd.2015.0333
- Kim K., Lee Y. Activation of CREB by PKA promotes the chondrogeneic differentiation of chick limb bud mesenchymal cells. Animal Cells and Systems. 2009. Vol. 13. No. 3. P. 289–295. https://doi.org/10.1080/19768354.2009.9647221
- Kim S. et al. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation. Biochemical and Biophysical Research Communications. 2010. Vol. 399. No. 1. P. 55–59. https://doi.org/10.1016/j.bbrc.2010.07.038
- Kosher R.A. et al. Cartilage proteoglycan core protein gene expression during limb cartilage differentiation. Developmental Biology. 1986. Vol. 118. No. 1. P. 112–117. https://doi.org/10.1016/0012-1606(86)90078-3
- Kulebyakin K. et al. Dynamic balance between pth1r-dependent signal cascades determines its pro-or anti-osteogenic effects on MSC. Cells. 2022. Vol. 11. No. 21. P. 3519. https://doi.org/10.3390/cells11213519
- Layden B.T., Newman M., Chen F., Fisher A., Lowe W.L. G Protein Coupled Receptors in Embryonic Stem Cells: A Role for Gs-Alpha Signaling. PLoS ONE. 2010. Vol. 5. No. 2. P. e9105. https://doi.org/10.1371/journal.pone.0009105
- Lazennec G., Canaple L., Saugy D., Wahli W. Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators. Biochem. Biophys. Res. Commun. 2000. Vol. 14. No. 12. P. 1962–1975. https://doi.org/10.1210/mend.14.12.0575
- Lee J.Y. et al. Pre-transplantational Control of the Post-transplantational Fate of Human Pluripotent Stem Cell-Derived Cartilage. Stem. Cell Reports. 2018. Vol. 11. No. 2. P. 440–453. https://doi.org/10.1016/j.stemcr.2018.06.021
- Lo K.W.-H., Kan H.M., Ashe K.M., Laurencin C.T. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J. Tissue Eng. Regen. Med. 2012. Vol. 6. No. 1. P. 40–48. https://doi.org/10.1002/term.395
- Lohse C. et al. Experimental and mathematical analysis of cAMP nanodomains. PLoS ONE. 2017. Vol. 12. No. 4. P. e0174856. https://doi.org/10.1371/journal.pone.0174856
- Malemud C.J., Papay R.S., Hering T.M. Forskolin Stimulates Aggrecan Gene Expression in Cultured Bovine Chondrocytes. American Journal of Therapeutics. 1996. Vol. 3. No. 2. P. 120–128. https://doi.org/10.1097/00045391-199602000-00005
- McIntire W.E., MacCleery G., Garrison J.C. The G protein β subunit is a determinant in the coupling of Gs to the β1-adrenergic and A2a adenosine receptors. Journal of Biological Chemistry. 2001. Vol. 276. No. 19. P. 15801–15809. https://doi.org/10.1074/jbc.M011233200
- Miki H., Okito A., Akiyama M., Ono T., Tachikawa N., Nakahama K. Genetic and epigenetic regulation of osteopontin by cyclic adenosine 3′ 5′-monophosphate in osteoblasts. Gene. 2020. Vol. 763. P. 145059. https://doi.org/10.1016/j.gene.2020.145059
- Miller R.P., Husain M., Lohin S. Long acting cAMP analogues enhance sulfate incorporation into matrix proteoglycans and suppress cell division of fetal rat chondrocytes in monolayer culture. J. Cell Physiol. 1979. Vol. 100. No. 1. P. 63–76. https://doi.org/10.1002/jcp.1041000107
- Minakawa T., Kanki Y., Nakamura K., Yamashita J.K. Protein kinase A accelerates the rate of early stage differentiation of pluripotent stem cells. Biochemical and Biophysical Research Communications. 2020. Vol. 524. № 1. P. 57–63. https://doi.org/10.1016/j.bbrc.2019.12.098
- Mirsaidi A., Tiaden A.N., Richards P.J. Prostaglandin E2 inhibits matrix mineralization by human bone marrow stromal cell-derived osteoblasts via Epac-dependent cAMP signaling. Sci. Rep. 2017. Vol. 7. No. 1. P. 2243. https://doi.org/10.1038/s41598-017-02650-y
- Norman D. et al. ACTH and a-MSH inhibit leptin expression and secretion in 3T3-L1 adipocytes: model for a central/peripheral melanocortin-leptin pathway. Molecular and Cellular Endocrinology. 2003. Vol. 200. P. 99–109. https://doi.org/10.1016/s0303-7207(02)00410-0
- Petersen R.K. et al. Cyclic AMP (cAMP)-Mediated Stimulation of Adipocyte Differentiation Requires the Synergistic Action of Epac- and cAMP-Dependent Protein Kinase-Dependent Processes. Molecular and Cellular Biology. 2008. Vol. 28. No. 11. P. 3804–3816. https://doi.org/10.1128/MCB.00709-07
- Pidoux G. et al. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis: OPA1 is an AKAP for perilipin. The EMBO Journal. 2011. Vol. 30. No. 21. P. 4371–4386. https://doi.org/10.1038/emboj.2011.365
- Pitman J.L., Wheeler M.C., Lloyd D.J., Walker J.R., Glynne R.J., Gekakis N. A Gain-of-Function Mutation in Adenylate Cyclase 3 Protects Mice from Diet-Induced Obesity. PLoS ONE. 2014. Vol. 9. No. 10. P. e110226. https://doi.org/10.1371/journal.pone.0110226
- Riffault M., Johnson G.P., Owen M.M., Javaheri B., Pitsillides A.A., Hoey D.A. Loss of Adenylyl Cyclase 6 in Leptin Receptor‐Expressing Stromal Cells Attenuates Loading‐Induced Endosteal Bone Formation. JBMR Plus. 2020. Vol. 4. No. 11. P. e10408. https://doi.org/10.1002/jbm4.10408
- Rogne M., Chu D.-T., Küntziger T.M., Mylonakou M.-N., Collas P., Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. MBoC. 2018. Vol. 29. No. 12. P. 1487–1501. https://doi.org/10.1091/mbc.E17-09-0538
- Rogne M., Taskén K. Compartmentalization of cAMP signaling in adipogenesis, lipogenesis, and lipolysis. Hormone and Metabolic Research. 2014. Vol. 46. No. 12. P. 833–840. https://doi.org/10.1055/s-0034-1389955
- Rumiński S., Kalaszczyńska I., Lewandowska-Szumieł M. Effect of cAMP Signaling Regulation in Osteogenic Differentiation of Adipose-Derived Mesenchymal Stem Cells. Cells. 2020. Vol. 9. No. 7. P. 1587. https://doi.org/10.3390/cells9071587
- Rybinska I., Mangano N., Tagliabue E., Triulzi T. Cancer-Associated Adipocytes in Breast Cancer: Causes and Consequences. IJMS. 2021. Vol. 22. No. 7. P. 3775. https://doi.org/10.3390/ijms22073775
- Saeed S. et al. Loss-of-function mutations in ADCY3 cause monogenic severe obesity. Nat. Genet. 2018. Vol. 50. № 2. P. 175–179. https://doi.org/10.1038/s41588-017-0023-6
- Tansey J., Sztalryd C., Hlavin E., Kimmel A., Londos C. The Central Role of Perilipin A in Lipid Metabolism and Adipocyte Lipolysis. IUBMB Life. 2004. Vol. 56. No. 7. P. 379–385. https://doi.org/10.1080/15216540400009968
- Tong T., Shen Y., Lee H.-W., Yu R., Park T. Adenylyl cyclase 3 haploinsufficiency confers susceptibility to diet-induced obesity and insulin resistance in mice. Sci. Rep. 2016. Vol. 6. No. 1. P. 34179. https://doi.org/10.1038/srep34179
- Tyurin-Kuzmin P.A. et al. Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. IJMS. 2020. Vol. 21. No. 12. P. 4442. https://doi.org/10.3390/ijms21124442
- Uemura T., Ohta Y., Nakao Y., Manaka T., Nakamura H., Takaoka K. Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling through a cAMP/protein kinase A signaling pathway. Bone. 2010. Vol. 47. No. 4. P. 756–765. https://doi.org/10.1016/j.bone.2010.07.008
- Vallin B. et al. Novel short isoforms of adenylyl cyclase as negative regulators of cAMP production. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2018. Vol. 1865. No. 9. P. 1326–1340. https://doi.org/10.1016/j.bbamcr.2018.06.012
- Wang H. et al. Identification of an Adenylyl Cyclase Inhibitor for Treating Neuropathic and Inflammatory Pain. Sci. Transl. Med. 2011. Vol. 3. P. 65ra3. https://doi.org/10.1126/scitranslmed.3001269
- Wang L. et al. By inhibiting ADCY5, miR-18a-3p promotes osteoporosis and possibly contributes to spinal fracture. Biochemical and Biophysical Research Communications. 2021. Vol. 550. P. 49–55. https://doi.org/10.1016/j.bbrc.2021.02.118
- Wang Q. et al. Differential dependence of the D1 and D5Dopamine receptors on the G protein γ7 subunit for activation of Adenylylcyclase. Journal of Biological Chemistry. 2001. Vol. 276. No. 42. P. 39386–39393. https://doi.org/10.1074/jbc.M104981200
- Wang Q. et al. Ribozyme-mediated Suppression of the G Protein γ7Subunit Suggests a Role in Hormone Regulation of Adenylylcyclase Activity. Journal of Biological Chemistry. 1997. Vol. 272. No. 41. P. 26040–26048. https://doi.org/10.1074/jbc.272.41.26040
- Wei J. et al. Phosphorylation and Inhibition of Olfactory Adenylyl Cyclase by CaM Kinase II in Neurons: A Mechanism for Attenuation of Olfactory Signals. Neuron. 1998. Vol. 21. No. 3. P. 495–504. https://doi.org/10.1016/s0896-6273(00)80561-9
- Wilson L.C., Trembath R.C. Albright's hereditary osteodystrophy. Journal of medical genetics. 1994. Vol. 31. No. 10. P. 779–784. https://doi.org/10.1136/jmg.31.10.779
- Xiong Y. et al. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U.S.A. 2004. Vol. 101. No. 4. P. 1045–1050. https://doi.org/10.1073/pnas.2637002100
- Yang D.-C. et al. cAMP/PKA Regulates Osteogenesis, Adipogenesis and Ratio of RANKL/OPG mRNA Expression in Mesenchymal Stem Cells by Suppressing Leptin. PLoS ONE. 2008. Vol. 3. No. 2. P. e1540. https://doi.org/10.1371/journal.pone.0001540
- Yoon Y., Oh C., Kang S., Chun J. Protein Kinase A Regulates Chondrogenesis of Mesenchymal Cells at the Post‐Precartilage Condensation Stage via Protein Kinase C‐α Signaling. J. of Bone & Mineral Res. 2000. Vol. 15. No. 11. P. 2197–2205. https://doi.org/10.1359/jbmr.2000.15.11.2197
- Zaccolo M., Zerio A., Lobo M.J. Subcellular Organization of the cAMP Signaling Pathway. Pharmacol. Rev. 2021. Vol. 73. P. 278–309. https://doi.org/10.1124/pharmrev.120.000086
- Zhang H. et al. Activation of PKA/CREB Signaling is Involved in BMP9-Induced Osteogenic Differentiation of Mesenchymal Stem Cells. Cell Physiol. Biochem. 2015. Vol. 37. No. 2. P. 548–562. https://doi.org/10.1159/000430376
- Zhang R. et al. Transcriptional Regulation of BMP2 Expression by the PTH-CREB Signaling Pathway in Osteoblasts. PLoS ONE. 2011. Vol. 6. No. 6. P. e20780. https://doi.org/10.1371/journal.pone.0020780
- Zhang X. et al. Crif1 Promotes Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells After Irradiation by Modulating the PKA/CREB Signaling Pathway. Stem Cells. 2015. Vol. 33. No. 6. P. 1915–1926. https://doi.org/10.1002/stem.2019
- Zhao L., Li G., Zhou G. SOX9 Directly Binds CREB as a Novel Synergism With the PKA Pathway in BMP‐2–Induced Osteochondrogenic Differentiation. J. of Bone & Mineral Res. 2009. Vol. 24. No. 5. P. 826–836. https://doi.org/10.1359/jbmr.081236
- Zuo X. et al. ADCY2, ADCY5, and GRIA1 are the key genes of cAMP signaling pathway to participate in osteoporotic peripheral and spinal fracture after the manipulation of Wnt signaling. Preprint. 2020. https://doi.org/10.21203/rs.3.rs-25264/v1
Supplementary files


