The Role of Extracellular Receptor Pools in the Regulation of Immune Homeostasis
- Authors: Samodova A.V.1
-
Affiliations:
- N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
- Issue: Vol 56, No 4 (2025)
- Pages: 79-104
- Section: Articles
- URL: https://journal-vniispk.ru/0301-1798/article/view/368085
- DOI: https://doi.org/10.7868/S3034611825040055
- ID: 368085
Cite item
Abstract
The formation of extracellular (free, serum, soluble, and circulating) forms of receptors can occur through mechanisms of proteolytic shedding, alternative mRNA splicing, capping followed by endocytosis, aggregation of heterodimers, and release of receptors from extracellular vesicles (microvesicles and exosomes). Free forms of receptors, in addition to blood, have been identified in cerebrospinal, synovial, and lacrimal fluids, nasal secretions, urine, and in vitro cell cultures. The physiological role of free receptors is to ensure an adequate immune response of immunocompetent cells in the paracrine space environment, functional cell activity (activation, proliferation, apoptosis, secretion, cytokine synthesis), regulation of blood transport protein activity, and cell contact interaction. An increase in the concentration of extracellular receptor molecules has been identified in Arctic residents during the polar night, during short-term general cooling, and in various pathological processes. The prognostic and diagnostic significance of free receptors of immunocompetent cells has been established, and the dynamics of their content depending on the localization and stage of the disease has been shown. An excessive increase in the content of circulating receptors is associated with suppression of the immune response, a deficiency of phagocytic defense, a decrease in the clearance of circulating immune complexes, and activation of the synthesis of IgE, IL-10, and antibodies with an increase in the activity of blood cell aggregation reactions. The article presents current data on the functional role of free receptor molecules, circulating complexes in the extracellular space, the ratio of free and membrane receptors, the relationship between soluble receptors and their substrate, and the concentrations of cytokines and free cytokine receptors in the intercellular environment. The necessity of developing physiological limits for the concentration of free receptor molecules, identifying the causes of receptor release into the environment, and studying the mechanisms of accumulation of soluble forms of receptors is demonstrated.
About the authors
A. V. Samodova
N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences
Email: annapoletaeva2008@yandex.ru
ORCID iD: 0000-0001-9835-8083
Cand. Sci. in Biology, leading researcher, head of the Laboratory of Regulatory Mechanisms of Immunity Arkhangelsk, 163020
References
- Alyasova A.V., Pegov R.G., Mikhailova E.M. et al. Soluble forms of HLA class I molecules in the blood serum of patients with breast and lung cancer. Nizhegorod. med. zh. 2008. No. 4. pp. 98–103. (In Russ.)
- Vereshchagina K.V., Samodova A.V., Dobrodeeva L.K. Features of hematological and immune reactions in patients with autoimmune thyroiditis living in the Arctic region of the Russian Federation. Clin. medic. 2023. Vol. 101. No. 4–5. pp. 216–222. (In Russ.) https://doi.org/10.30629/0023-2149-2023-101-4-5-216-222
- Vishnevskaya T.V., Masalova O.V., Shkurko T.V. et al. Soluble forms of differentiation antigens in the serum of patients with hepatitis C. Med. immun. 2005. No. 1. pp. 33–40. (In Russ.)
- Gerasimov A.M., Delenyan N.V., Shaov M.T. Formation of the body's oxygen protection system. M:. 1998. pp. 150–178. (In Russ.)
- Gostyuzhova E.A., Lichkov V.F., Karaulov A.V. et al. Features of the content of soluble HLA class I molecules, CD8 antigen and their complexes in chronic myeloid leukemia. Immunopatol., allergol., infektol. 2008. No. 3. pp. 33–38. (In Russ.)
- Dobrodeeva L.K., Samodova A.V. Adhesion and aggregation of peripheral venous blood cells in residents of high latitudes. Yekaterinburg: Ural Branch of the Russian Academy of Sciences, 2024. 216 p. (In Russ.)
- Dobrodeeva L.K., Samodova A.V. Immunosuppressive and pathogenetic mechanisms in infectious allergies. Infektsiya i immunitet. 2022. Vol. 12. No. 2. pp. 299–305. (In Russ.) https://doi.org/10.15789/2220-7619-IAP-1680
- Dobrodeeva L.K., Samodova A.V., Balashova S.N., Pashinskaya K.O. Features of the relationship between the regulation of hemodynamics and the activity of immune reactions in healthy and patients with coronary heart disease living in the European north and in the Arctic of the Russian Federation. Klin. medits. 2023. Vol. 101. No. 2–3. pp. 116–122. https://doi.org/10.30629/0023-2149-2023-101-2-3-116-122
- Dobrodeeva L.K., Samodova A.V., Zubatkina I.S. et al. The involvement of transferrin receptors in metabolic processes. Russ. allerg. j. 2013. Vol. 2. No. 2. pp. 84–85. (In Russ.)
- Dobrodeeva L.K., Samodova A.V., Karyakina O.E. Interrelations in the immune system. RIO UB RAS. Ekat. 2014. 200 p. (In Russ.)
- Evsegneeva I.V., Manakova E.A., Novikov V.V., Karaulov A.V. Elevated levels of soluble CD50, CD95, and HLAI class antigens in the blood serum of patients with hepatitis A. Tsitok. i vosp. 2005. Vol. 4. No. 3. pp. 25–27.
- Egorova N.I., Kournikov G.Yu., Babaev A.A., Novikov V.V. Serum level of soluble intercellular adhesion molecules in urogenital chlamydia. Tsitok. i vosp. 2003. Vol. 2. No. 2. pp. 32–36. (In Russ.)
- Epifanova E.A., Babaev A.A., Gamayunova O.A., Novikov V.V. The serum level of soluble adhesion molecules in lung diseases. Ross. bioterapevt. zh. 2014. Vol. 13. No. 1. p. 82. (In Russ.)
- Karaulov A.V., Evsegneeva I.V., Tyuleneva I.B. et al. Study of the content of soluble forms of membrane antigens in patients with type 2 diabetes mellitus with the development of diabetic retinopathy. Ross. bioterapevt. zh. 2006. Vol. 5. No. 1. pp. 75–79. (In Russ.)
- Karaulov A.V., Lebedev M.Yu., Novikov V.V. Soluble differentiation antigens and histocompatibility molecules in patients with various types of injuries. Sechenov. vestn. 2010. No. 1. pp. 63–68. (In Russ.)
- Karaulov A.V., Makarova E.V., Lyubavina N.A. and others. Soluble forms of membrane antigens in corticosteroid therapy of exacerbations of chronic obstructive pulmonary disease. Immun. 2016. Vol. 37. No. 3. pp. 175–180. (In Russ.)
- Knarian V.A., Sarukhanyan F.P. Ca2+-regulated enzymes calpain and calcineurin in the processes of neurodegeneration and prospects for neuroprotective pharmacotherapy. Zhurn. nevrol. i psikhiatr. im. S.S.Korsakova. 2023. Vol. 123. No. 7. pp. 32–40. https://doi.org/10.17116/jnevro202312307132
- Kravchenko G.A., Novikov D.V., Ptitsyna Y.S., Novikov V.V. Serum levels of soluble forms of membrane antigens of immune system cells in carriers of viral hepatitis G markers. Vopr. virus. 2005. Vol. 50. No. 5. pp. 19–22.
- Kubysheva N.I., Postnikova L.B., Presnyakova N.B. et al. Soluble antigens ICAM-1 and ICAM-3 in chronic obstructive pulmonary disease. Immun. 2009. Vol. 30. No. 1. p. 55. (In Russ.)
- Kubysheva N.I., Postnikova L.B., Soodaeva S.K. et al. The importance of soluble cell adhesion molecules, nitric oxide metabolites, endothelin-1 and their associations as markers of inflammation progression in COPD. Sovrem. tekhnol. v medits. 2017. Vol. 9. No. 2. pp. 105–117. (In Russ.)
- Kuptsova N.V., Ryabinina Z.V., Tyutcheva O.V. et al. Fas-FasL interaction causes immunodeficiency in children with atopic bronchial asthma. Fundam. issled. 2010. Vol. 25. No. 1. P. 58. (In Russ.)
- Lugovaya A.V., Kalinina N.M., Mitreikin V.F. et al. Evaluation of the effectiveness of Fas-mediated apoptosis of peripheral blood lymphocytes in patients with type 1 diabetes mellitus. Medits. alf. 2019. Vol. 3. No. 22. pp. 26–31. (In Russ.)
- Mazurov D.V., Masternik Yu.A., Pinegin B.V. Age-related changes in human T-lymphocytes carrying CD45RO and HLA-DR markers. Immun. 2002. No. 5. pp. 268–271. (In Russ.)
- Makarova E.V., Shumilova S.V., Vakhlamov V.A. et al. The effect of noninvasive ventilation on functional and immune parameters in patients with severe exacerbation of chronic obstructive pulmonary disease. Klin. medts. 2017. vol. 95. No. 4. pp. 344–349. (In Russ.)
- Mamaeva M.E., Alyasova A.V., Novikov V.V. The serum content of soluble HLA-I class molecules. Russ. biotherapeut. j. 2014. Vol. 13. No. 1. p. 108. (In Russ.)
- Novikov V.V., Baryshnikov A.Yu., Karaulov A.V. Soluble forms of membrane antigens of cells of the immune system. Immun. 2007. No. 4. pp. 249–253. (In Russ.)
- Novikov V.V. Soluble differentiation molecules in inflammatory processes (the second life of proteins). “Publishing salon”. Nizhn. Novg. 2022. 212 p. (In Russ.)
- Novikov V.V., Babaev A.A., Kravchenko G.A. Soluble associates of CD54 and CD19 adhesion molecules in human blood serum. Immun. 2008. No. 4. pp. 220–222. (In Russ.)
- Novikov V.V., Evstegneeva I.V., Karaulov A.V., Baryshnikov A.Yu. Soluble forms of membrane antigens of immune system cells in socially significant infections. Ross. bioterapevt. zh. 2005. No. 3. p. 131. (In Russ.)
- Novikov V.V., Karaulov A.V. The “storm” of soluble differentiation molecules in COVID-19. Immun. 2022. Vol. 43. No. 4. pp. 458–467. (In Russ.) https://doi.org/10.33029/0206-4952-2022-43-4-458-467
- Novikov V.V., Karaulov A.V., Baryshnikov A.Yu. Soluble forms of membrane antigens of immune system cells. M. Publishing house: Med. inform. the agency. 2008. 249 p. (In Russ.)
- Novikov V.V., Makarova E.V., Shumilova S.V. et al. Soluble differentiation molecules as biomarkers in COPD. Allergol. and immun. 2017. Vol. 18. No. 3. pp. 157–160. (In Russ.)
- Novikov D.K., Novikov P.D., Novikova V.I. Immunodeficiency infectious diseases. Med. novosti. 2011. No. 5. pp. 6–13.
- Fingers M.A., Ivanov A.A. Intercellular interactions. M.: Medicine, 1995. 224 p. (In Russ.)
- Poletaeva A.V. Nonspecific hormone regulation of cell receptor activity. Ekol. chel. 2010. No. 10. pp. 58–60.
- Poletaeva A.V., Dobrodeeva L.K. The ratio of the content of soluble and membrane forms of lymphocyte differentiation clusters. A.V. Poletaeva, L.K. Dobrodeeva. Vestn. Ural. medits. akadem. nauki. 2011. Vol. 35. No. 2/1. pp. 62–63. (In Russ.)
- Radaeva O.A., Novikova L.V. The prognostic value of interleukin-6 and its soluble receptor (sIL-6) in essential arterial hypertension. Vestn. Ural. medits. akadem. nauki. 2012. Vol. 41. No. 4. P. 152. (In Russ.)
- Radivilko A.S., Grigoriev E.V. Dynamics of serum markers of apoptosis in patients with severe concomitant trauma. Medits. i obrazov. v Sibiri. 2014. No. 4. p. 18. (In Russ.)
- Ratushnyak M., Semochkina Yu.P. Exosomes – natural nanoparticles for use in therapy. Ross. nanotekhnologii. 2020. T. 1. No. 4. pp. 435–450. (In Russ.) https://doi.org/10.1134/S1992722320040123
- Samodova A.V., Dobrodeeva L.K. Mechanisms of regulatory functions of free receptors of immunocompetent cells in ensuring immune homeostasis in different climatogeographic conditions. Human Physiology. 2025. Vol. 51. No. 1. pp. 84–96. (In Russ.) https://doi.org/10.31857/S0131164625010081
- Samodova A.V., Dobrodeeva L.K. The role of shadding in the activity of immunocompetent cells with a reactive defense mechanism. Fiziol. chelov. 2012. Vol. 38. No. 4. pp. 114–120. (In Russ.)
- Samodova A.V., Dobrodeeva L.K. The ratio of the content of the extracellular pool of signaling molecules and the activity of intercellular blood contacts in normal and pathological conditions. Klin. medits. 2022. Vol. 100. No. 9–10. pp. 456–463. (In Russ.) https://doi.org/10.30629/0023-2149-2022-100-9-10-456-463
- Samodova A.V., Dobrodeeva L.K. The ratio of the content of the pool of free adhesion molecule receptors and the activity level of the immune system in residents of the Murmansk region. Fiziol. chelov. 2019. Vol. 45. No. 1. pp. 104–112. (In Russ.)
- Samodova A.V., Zubatkina I.S., Karyakina O.E. The effect of the extracellular receptor pool on the development of immune responses. Rosc. immun. zhurn. 2013. Vol. 7. No. 2–3. pp. 162–163. (In Russ.)
- Samodova A.V., Tsypysheva O.B. The ratio of the extracellular pool of receptors and the level of immune reactions in people living in the Arctic. Ekol. chelov. 2015. No. 12. pp. 21–28. (In Russ.)
- Simbirtsev A. S. Interleukin-2 and the interleukin-2 receptor complex in the regulation of immunity. Immun. 1998. No. 2. pp. 9–12. (In Russ.)
- Stavinskaya O.A., Repina V.P., Poletaeva A.V. et al. Expression of markers of apoptosis and proliferation in patients with oncopathology. Allerg. and immun. 2009. Vol. 10. No. 2. pp. 254–255. (In Russ.)
- Suk S.A., Kirilyuk M.L., Rykov S.A. The content of sICAM-1 in the blood of diabetic edema in patients in relation to the data of instrumental methods of fundus examination. Ophthalm. Oftal'm. Vost. Evr. 2020. Vol. 10. No. 1. pp. 65–73. (In Russ.)
- Titov V.N., Vostorov I.A., Kaba S.I. and others. Low and very low density lipoproteins: Pathogenetic and clinical significance. medical staff. Klin. medits. 2013. Vol. 91. No. 1. pp. 20–27. (In Russ.)
- Turchinets A.M., Yakovlev A.A. Structural determinants of small extracellular vesicles (exosomes) and their role in biological functions. Nejrokhimiya. 2023. T. 40. No. 4. pp. 353–366. (In Russ.) https://doi.org/10.31857/S1027813323040222
- Khacheryan M.K., Serkin D.M., Serebryakova O.V. et al. Some markers of endothelial dysfunction in patients with type 1 diabetes mellitus with diabetic cardiovascular autonomic neuropathy. Zabajkai. med.vestn. 2016. No. 4. pp. 11–16. (In Russ.)
- Shumilova S.V., Novikov D.V., Baryshnikov A.Yu., Novikov V.V. Analysis of the expression of IL-2 – IL-2R system genes in lung adenocarcinoma cell lines A549 and NCI-H23. Ross. bioterapevt. zh. 2012. Vol. 11. No. 2. p. 64. (In Russ.)
- Yunusova N.V., Tugutova E.A., Tamkovich S.N., Kondakov I.V. The role of tetraspanins and exosome proteases in tumor progression. Biomeditsinskaya khimiya. 2018. Vol. 64. pp. 123–133. (In Russ.) https://doi.org/10.18097/PBMC20186402123
- Adamashvili I., Pressly T., Gebel H. et al. Soluble HLA in saliva of patients with autoimmune rheumatic diseases. Rheumatol. Int. 2002. Vol. 22. No. 2. P. 71–76. https://doi.org/10.1007/s00296-002-0173-3
- Alghamdi A., Alissa M. The Potential inflammatory role of IL-6 signalling in perturbing the energy metabolism function by stimulating the Akt-mTOR pathway in Jurkat T Cells. Folia Biol. (Praha). 2025. Vol. 71. No. 1. P. 8–17. https://doi.org/10.14712/fb2025071010008
- An H., Chandra V., Pirairo B. et al. Soluble LILRA3, a potential natural anti-inflammatory protein, is increased in patients with rheumatoid arthritis and is tightly regulated by interleukin 10, tumor necrosis factors-α and interferon-γ. J. Rheumatol. 2010. Vol. 37. No. 8. P. 1596–1606. https://doi.org/10.3899/jrheum.091119
- Aukrust P., Müller F., Ueland T. et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation. 1999. Vol. 100. No. 6. P. 614–620. https://doi.org/10.1161/01.cir.100.6.614
- Bakela K., Athanassakis I. Soluble major histocompatibility complex molecules in immune regulation: highlighting class II antigens. Immunology. 2018. Vol. 153. No. 3. P. 315–324. https://doi.org/10.1111/imm.12868
- Balakrishnan C.K., Tye G.J., Balasubramaniam S.D., Kaur G. CD74 and HLA-DRA in Cervical Carcinogenesis: Potential Targets for Antitumour Therapy. Medicina (Kaunas). 2022. Vol. 58. No. 2. P. 190. https://doi.org/10.3390/medicina58020190
- Barash J., Dushnitzki D., Barak Y. Tumor necrosis factor (TNF) alpha and its soluble receptor (sTNFR) p75 during acute human parvovirus B19 infection in children. Immunol. Letters. 2003. Vol. 88. No. 2. P. 109–112. https://doi.org/10.1016/s0165-2478(03)00075-0
- Bouhlal H., Galon J., Kazatchkine M.D. et al. Soluble CD16 (CD11b/CD18)–mediated infection of monocytes/macrophages by opsonized primary R5HIV-1. J. Immunol. 2001. Vol. 166. No. 5. P. 3377–3383. https://doi.org/10.4049/jimmunol.166.5.3377
- Brieva J.A., Villar L.M., Leoro G. Soluble HLA class I antigen secretion by normal lymphocytes: relationship with cell activation and effect of interferon-gamma. Clin. Exp. Immunol. 1990. Vol. 82. No. 2. P. 390–395.
- Brossard C., Semichon M., Trautmann A., Bismuth G. CD5 inhibits signaling at the immunjlogical synapse without imparing its formation. J. Immunol. 2003. Vol. 170. No. 9. P. 4623–4629. https://doi.org/10.4049/jimmunol.170.9.4623
- Bujanowski-Weber J., Brings B., Knöller I. et al. Expression of low-affinity receptor for IgE (Fc epsilon RII, CD23) and IgE-BF (soluble CD23) release by lymphoblastoid B-cell line RPMI-8866 and human peripheral lymphocytes of normal and atopic donors. Immunol. 1989. Vol. 66. No. 4. P. 505–511.
- Buscail L., Bournet B., Cordelier P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020. Vol. 17. No. 3. P. 153–168. https://doi.org/10.1038/s41575-019-0245-4
- Chambers A.E., Stanley P.F., Randeva H., Banerjee S. Microvesicle-mediated release of soluble LH/hCG receptor (LHCGR) from transfected cells and placenta explants. Reproductive Biology and Endocrinology. 2011. Vol. 9. P. 64. https://doi.org/10.1186/1477-7827-9-64
- Chan F.K. The pre-ligand binding assemble domain: a potential target of inhibition of tumour necrosis factor receptor function. Ann. Rheun. Dis. 2000. Vol. 59. P. 150–153. https://doi.org/10.1136/ard.59.suppl_1.i50
- Claus R., Bittorf T., Walzel H. et al. High concentration of soluble HLA-DR in the synovial fluid: Rebmann V generation and significance in «rheumatoidlike» inflammatory joint diseases. Cell Immunol. 2000. Vol. 206. P. 85–100. https://doi.org/10.1006/cimm.2000.1729
- Cocucci E., Racchetti G., Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009. Vol. 19. № 2. P. 43–51. https://doi.org/10.1016/j.tcb.2008.11.003
- Cohen M.C., Cohen S. Cytokine function: a study in biologic diversity. Am. J. Clin. Pathol. 1996. Vol. 105. No. 5. P. 589–598.
- Costs E., Lima M., Alves J. et al. Inflammation, T-cell phenotype, and inflammatory cytokines in chronic kidney disease patients under hemodialysis and its relationship to resistance to recombinant human erythropoietin therapy. J. Clin. Immunol. 2008. Vol. 28. No. 3. P. 268. https://doi.org/10.1007/s10875-007-9168-x
- Dehm S.M., Tindall D.J. Ligand-independent androgen receptor activity is activation function-2-independent and resistant to antiandrogens in androgen refractory prostate cancer cells. J. of Biol. Chem. 2006. Vol. 281. No. 38. P. 27882–27893. https://doi.org/10.1074/jbc.M605002200
- Demaria S., Schwab R., Gottensman S.R., Buskin Y. Soluble beta 2-macroglobulin-free class I heavy chains are reased from that surface of activated and leukemia cells by a metalloprotease. J. Biol. Chem. 1994. Vol. 269. P. 6689–6694.
- Deng S., Xu Y., Zheng L. HDL structure. Adv. Exp. Med. Biol. 2022. Vol. 1377. P. 1–11. https://doi.org/10.1007/978-981-19-1592-5_1
- Deng Z.B., Poliakov A., Hardy R.W. et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009. Vol. 58. No. 11. P. 2498–2505. https://doi.org/10.2337/db09-0216
- DiMarco G.S., Quinto B.M., Juliano M. et al. Purification and characterization of a neutral endopertidase-like enzyme from human urine. J. Hypertens. 1998. Vol. 16. No. 12. P. 1971–1978. https://doi.org/10.1046/j.1365-2222.2001.01124.x
- EL Andaloussi S., Mäger I., Breakefield X.O., Wood M.J.A. Extracellular vesicles: Biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 2013. Vol. 12. No. 5. P. 347–357. https://doi.org/10.1038/nrd3978
- Elemer G.S., Edgington T.S. Microfilament reorganization is associated with functional activation of αβ on monocytic cells. J. Biol. Chem. 1994. Vol. 269. No. 5. P. 3159–3166.
- Etzerodt A., Rasmussen M.R., Svendsen P. et al. Structural basis for inflammation-driven shedding of CD163 ectodomain and tumor necrosis factor-α in macrophages. J. Biol. Chem. 2014. Vol. 289. No. 2. P. 778–788. https://doi.org/10.1074/jbc.M113.520213
- Evans B.J., McDoowall A., Taylor P. et al. Shedding of lymphocyte function-associated antigen-1 (LEA-1) in a human inflammatory response. Blood. 2006. Vol. 107. No. 9. P. 3593–3599. https://doi.org/10.1182/blood-2005-09-3695
- Ferapontov A., Mellemkjær A., McGettrick H.M. et al. Large soluble CD18 complexes with exclusive ICAM-1-binding properties are shed during immune cell migration in inflammation. J. Transl. Autoimmun. 2025. Vol. 10. P. 100266. https://doi.org/10.1016/j.jtauto.2025.100266
- Frémeaux-Bacchi V., Fischer E., Kazatchkine M.D. Membrane and Soluble Forms of CD21 (The C3dg/EBV Receptor. Immunol. Lett. 1996. Vol. 54. No. 2–3. P. 201–204.
- Galichet A., Weibel M., Heizmann C.W. Calcium regulated intramembrane proteolysis of the RAGE receptor. Biochem. Biophys. Res. Commun. 2008. Vol. 370. No. 1. P. 1–5. https://doi.org/10.1016/j.bbrc.2008.02.163
- Gary-Gouy H., Harriague J., Bismuth G. et al. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood. 2002. Vol. 159. No. 8. P. 3739–3747. https://doi.org/10.1182/blood-2002-05-1525
- Gorovoy M., Gaultier A., Campana W.M. et al. Inflammatory mediators promote production of shed LRP1/CD91, which regulates cell signaling and cytokine expression by macrophages. J. Leukoc. Biol. 2010. Vol. 88. No. 4. P. 769–778. https://doi.org/10.1189/jlb.0410220
- Greaves M., Hairi G., Newman R. et al. Selective expression of the common acute lymphoblastic leukemia (gp100) antigen on immature lymphoid cells and their malignant counterparts. Blood. 1983. Vol. 61. P. 628.
- György B., Szabó T.G., Pásztói M. et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011. Vol. 68. No. 16. P. 2667–2688. https://doi.org/10.1007/s00018-011-0689-3
- Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 1983. Vol. 97. No. 2. P. 329–339. https://doi.org/10.1083/jcb.97.2.329
- Harris N.L., Jaffe E.S., Stein H. et al. A revised European-American classification of lymphoid neoplasms: A proposal from the International Lymphoma Study Group [see comments]. Blood. 1994. Vol. 84. P. 1361.
- Hirashima M., Higuchi S., Sakamoto K., Nishiyama T. The ratio of neutrophils to lymphocytes and the phenotypes of neutrophils in patient with early gastric cancer. Cancer. Res. Clin. Oncol. 1997. Vol. 124. No. 6. P. 329–334. https://doi.org/10.1007/s004320050178
- Hollion S., Saraux A., Youinou P., Jamin C. Expression of RAGs in peripheral B-cells outside germinal centers is associated with the expression of CD5. J. Immunol. 2005. Vol. 174. No. 9. P. 5553–5561.
- Hughes A.E.O., Montgomery M.C., Liu C., Weimer E.T. Allele-specific quantification of human leukocyte antigen transcript isoforms by nanopore sequencing. Front. Immunol. 2023. Vol. 14. P. 1199618. https://doi.org/10.3389/fimmu.2023.1199618
- Hurwitz S.N., Rider M.A., Bundy J.L. et al. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget. 2016. Vol. 7. No. 52. P. 86999–87015. https://doi.org/10.18632/oncotarget.13569
- Hwang C., Gatanaga M., Granger G., Gatanaga T. Mechanism of release of soluble forms of tumor necrosis factor/lymphotoxin receptors by phorbol maristate acetate-stimulated human THP-1 cells in vitro. J. Immunol. 1993. Vol. 151. P. 5631–5638.
- Inoue T., Tsai B. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb. Perspect. Biol. 2013. Vol. 5. P. a013250. https://doi.org/10.1101/cshperspect.a013250
- Israels S.J., McMillan-Ward E.M., Easton J. et al. CD63 associates with the alpha II b beta 3 integrin-CD9 complex on the surface of activated platelets. Thromb. Haemost. 2001. Vol. 85. No. 1. P. 134–141.
- Izuma M., Kobayasgi K., Shirotani K. et al. In vitro cytokine production of peripheral blood mononuclear cells in response to HCV core antigen stimulation during interferon-beta treatment and its relevance to s CD8 and sCD30. Hepatol. Res. 2000. Vol. 18. No. 3. P. 218–229. https://doi.org/10.1016/s1386-6346(00)00071-1
- Jack R.S., Grunwald U., Stelter F., Workalemahu G., Schütt C. Both membrane-bound and soluble forms of CD14 bind to gram-negative bacteria. Eur. J. Immunol. 1995. Vol. 25. No. 5. P. 1436–1441. https://doi.org/10.1002/eji.1830250545
- Justo B.L., Jasiulionis M.G. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int. J. Mol. Sci. 2021. Vol. 22. No. 17. P. 9319. https://doi.org/10.3390/ijms22179319
- Karampoor S., Zahednasab H., Etemadifar M., Keyvani H. The levels of soluble forms of CD21 and CD83 in multiple sclerosis. J. Neuroimmunol. 2018. Vol. 320. P. 11–14. https://doi.org/10.1016/j.jneuroim.2018.04.005
- Kitamura T., Kitamura Y., Nakae J. et al. Mosaic analysis of insulin receptor function. J. Clin. Invest. 2004. Vol. 113. No. 2. P. 209–219. https://doi.org/10.1172/JCI17810
- Kong Y., Wang Y., Wu X. et al. Storm of soluble immune checkpoints associated with disease severity of COVID-19. Signal Transduct. Target. Ther. 2020. Vol. 5. No. 1. P. 192. https://doi.org/10.1038/s41392-020-00308-2
- Kossiva L., Paterakis G., Tassiopoulos S. et al. Decreased expression of membrane alpha4beta1, alpha5beta1 integrins and transferrin receptor on erythroblasts in splenectomized patients with beta-thalassemia intermedia. Parallel assessment of serum soluble transferrin receptors levels. Ann. Hematol. 2003. Vol. 82. No. 9. P. 579–584. https://doi.org/10.1007/s00277-003-0708-z
- Kubysheva N., Soodaeva S., Novikov Vol. et al. Soluble HLA-I and HLA-II molecules are potential prognostic markers of progression of systemic and local inflammation in patients with COPD. Dis. Markers. 2018. Vol. 2018. P. 3614341. https://doi.org/10.1155/2018/3614341
- Laso F.J., Iglesias-Osma C., Ciudad J. et al. Alcoholic liver cirrosis is associated with a decreased expression of the CD28 costimulatory molecule? A lower ability of T-cells to bind exogenous IL-2? And increased soluble CD8 levels. Cytometry. 2000. Vol. 42. No. 5. P. 290–295.
- Levine S.J. Mechanisms of soluble cytokine receptor generation. J. Immunol. 2004. Vol. 173. P. 5343–5348.
- Logtenberg M.E.W., Scheeren F.A., Schumacher T.N. The CD47-SIRPα immune checkpoint. Immunity. 2020. Vol. 52. No. 5. P. 742–752. https://doi.org/10.1016/j.immuni.2020.04.011
- Lourdusamy R., Gokulakrishnan K., Nilavan E. et al. Soluble TNFR1 Levels in Type 2 Diabetes and its Association with Stages of Proteinuria. J. Assoc. Physicians India. 2023. Vol. 71. No. 6. P. 11–12. https://doi.org/10.5005/japi-11001-0261
- Lub M., van Kooyk Y., van Vliet S.J., Figdo C.G. Dual role of the action cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. Mol. Biol. Cell. 1997. Vol. 8. P. 341–351.
- Malysch T., Reinhold J.M., Becker C.A. et al. In vivo immunomodulation of IL6 signaling in a murine multiple trauma model. Immunol. Res. 2023. Vol. 71. No. 2. P. 164–172. https://doi.org/10.1007/s12026-022-09319-3
- Martínez M.C., Larbret F., Zobairi F. et al. Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood. 2006. Vol. 108. No. 9. P. 3012–3020. https://doi.org/10.1182/blood-2006-04-019109
- Masuda M., Takahashi H. Increase of soluble Fc gamma RIIIa derived from macrophages in plasma from patients with atherosclerosis. Rinsho Byori. 2002. Vol. 50. P. 502–505.
- Mathiot C., Galon J., Tartour E. et al. Soluble CD16 in plasma cell dyscrasias. Leuk. Lymphoma. 1999. Vol. 32. № 5–6. P. 467–474. https://doi.org/10.3109/10428199909058404
- Mathivanan S., Ji H., Simpson R.J. Exosomes: extracellular organelles important in intercellular communication. J. Proteomics. 2010. Vol. 73. No. 10. P. 1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006
- McDonald J.C., Adamashyli I. Soluble HLA: a review of the literature. Hum. Immunol. 1998. Vol. 59. No. 7. P. 387–403. https://doi.org/10.1016/s0198-8859(98)00033-0
- Miller S., Krijnse-Locker J. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 2008. Vol. 6. P. 363–374. https://doi.org/10.1038/nrmicro1890
- Møller H.J., Nielsen M.J., Maniecki M.B. et al. Soluble macrophage-derived CD163: a homogenous ectodomain protein with a dissociable haptoglobulin-hemoglobin binding. Immunology. 2010. Vol. 215. No. 5. P. 406–412. https://doi.org/10.1016/j.imbio.2009.05.003
- Morgan C.L., Price C.P., Cohen S.B. et al. Soluble CD8 stabilizes the HLA class I molecule by promoting beta 2M exchange: analysis in real-time. Hum. Immunol. 1999. Vol. 60. No. 5. P. 442–449. https://doi.org/10.1016/s0198-8859(99)00014-2
- Nazarenko I., Rana S., Baumann A. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 2010. Vol. 70. No. 4. P. 1668–1678. https://doi.org/10.1158/0008-5472.CAN-09-2470
- Noh G., Lozano F. Intravenous immune globulin effects on serum-soluble СD5 levels in atopic dermatitis. Clin. Exp. Allergy. 2001. Vol. 31. No. 12. P. 1932–1938.
- Ohkudo K., Baraniuk J.N., Hohman R.J. et al. Human nasal mucosal neutral endopeptidase (NEP): location, quantitation, and secretion. Am. J. Respir. Cell. Mol. Biol. 1993. Vol. 9. No. 5. P. 557–567. https://doi.org/10.1165/ajrcmb/9.5.557
- Okita R., Senoo T., Mimura-Kimura Y. et al. Characterizing soluble immune checkpoint molecules and TGF-beta (1,2,3) in pleural effusion of malignant pleural mesothelioma. Sci Rep. 2024. Vol. 14. No. 1. P. 15947. https://doi.org/10.1038/s41598-024-66189-5
- Palmer W.H., Deng W.-M. Ligand independent mechanisms of Notch activity. Trends Cell Biol. 2015. Vol. 25. No. 11. P. 697–707. https://doi.org/10.1016/j.tcb.2015.07.010
- Park E.-J., Lee C.-W. Soluble receptors in cancer: mechanisms, clinical significance, and therapeutic strategies. Exp. Mol. Med. 2024. Vol. 56. No. 1. P. 100–109. https://doi.org/10.1038/s12276-023-01150-6
- Pashinskaya K.O., Samodova A.V., Dobrodeeva L.K. Features of the immune system and levels of blood transport components in residents of the arctic of the Russian Federation. American Journal of Human Biology. 2024. Vol. 36. No. 10. No. article e24136. https://doi.org/10.1002/ajhb.24136
- Pavani K.C., Alminana C., Wydooghe E. et al. Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod. Fertil. Dev. 2017. Vol. 29. No. 1. P. 66–83. https://doi.org/10.1071/RD16318
- Piraner D.A., Abedi M.H., Gonzalez M.J.D. et al. Engineered receptors for soluble cellular communication and disease sensing. Nature. 2025. Vol. 638. No. 8051. P. 805–813. https://doi.org/10.1038/s41586-024-08366-0
- Plevriti A., Lamprou M., Mourkogianni E. et al. The Role of Soluble CD163 (sCD163) in Human Physiology and Pathophysiology. Cells. 2024. Vol. 13. No. 20. P. 1679. https://doi.org/10.3390/cells13201679
- Ramos-Casals M., Font G., Garsia-Carrasco M. et al. Assignment of a gene coding for a human T-cell antigen with a molecular weight of 40,000 dalton to chromosome. Cytogen. Cell Genet. 1998. Vol. 47. No. 1–2. P. 8–10.
- Rebmann V., Ronin-Walknowska E., Sipak-Szmigiel O. et al. Soluble HLADR and soluble CD95 ligand levels in pregnant women with antiphospholipid syndromes. Tissue Antigens. 2003. Vol. 62. No. 6. P. 536–541. https://doi.org/10.1046/j.1399-0039.2003.00138.x
- Reddy M.M., Weissman A.M., Mazza D.S. et al. Circulating elevated levels of soluble CD23, interleukin-4, and CD20+CD23+ lymphocytes in atopic subjects with elevated serum IgE concentrations. Ann. Allergy. 1992. Vol. 69. No. 2. P. 131–134.
- Rhynes V.K., McDonald J.C., Gelder F.B. et al. Soluble HLA class I in the serum of transplant recipients. Ann. Surg. 1993. Vol. 217. No. 5. P. 485–491. https://doi.org/10.1097/00000658-199305010-00008
- Rokita E., Menzel E.J. Characteristics of CD14 shedding from human monocytes. Evidence for the competition of soluble CD14 (sCD14) with CD14 receptors for lipopolysaccharide (LPS) binding. APMIS. 1997. Vol. 105. № 7. P. 510–518. https://doi.org/10.1111/j.1699-0463.1997.tb05048.x
- Rossi M.I., Yokota T., Medina K.L. et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood. 2003. Vol. 101. No. 2. P. 576–584. https://doi.org/10.1182/blood-2002-03-0896
- Sabbah A., Buchmann C., Lauret M.G., Drouet M. Correlational Study Between Lymphocyte IgE Markers: Membrane CD23 (mCD23) and Soluble CD23 (sCD23) in an Atopic Population. Allerg. Immunol. 1993. Vol. 25. No. 2. P. 48–54.
- Salafia G., Carandina A., Sacco R.M. et al. Soluble Triggering Receptors Expressed on Myeloid Cells (sTREM) in Acute Ischemic Stroke: A Potential Pathway of sTREM-1 and sTREM-2 Associated with Disease Severity. Int. J. Mol. Sci. 2024. Vol. 25. No. 14. P. 7611. https://doi.org/10.3390/ijms25147611
- Samodova A.V., Dobrodeeva L.K., Patrakeeva V.P. The relationship of sCD56 and sCD16 quantitative indicators with the level of immunocompetent cells, cytokines, circulating immune complexes, and cyclic nucleotides in nearly healthy people living in the arctic territory. Biology bulleten. 2024. Vol. 51. No. 6. P. 1805–1815. https://doi.org/10.1134/S1062359024609030
- Schulz R., Laing P., Sewell H.F., Shakib F. Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Europ. J. Immunol. 1995. Vol. 25. No. 11. P. 3191–3194. https://doi.org/10.1002/eji.1830251131
- Sheldon H., Heikamp E., Turley H. et al. New mechanism for notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood. 2010. Vol. 30. No. 15. P. 3894–3901. https://doi.org/10.1182/blood-2009-08-239228
- Ship M.A., Stefano G.B., Switzer S.N., Griffin J.D., Reinherz E.L. CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood. 1991. Vol. 78. No. 7. P. 1834–1841.
- Shipp M., Look A.T. Hematopoietic differentiation antigens that are membrane-associated enzymes: cutting is the key!. Blood. 1993. Vol. 82. No. 4. P. 1052–1070.
- Siemiątkowska A., Bryl M., Kosicka-Noworzyń K. et al. Low on-treatment levels of serum soluble CD8 (sCD8) predict better outcomes in advanced non-small cell lung cancer patients treated with atezolizumab. Cancer Immunol. Immunother. 2023. Vol. 72. No. 6. P. 1853–1863. https://doi.org/10.1007/s00262-023-03377-8
- Simpson R.J., Jensen S.S., Lim J.W.E. Proteomic profiling of exosomes: current perspectives. Proteomics. 2008. Vol. 8. No. 19. P. 4083–4099. https://doi.org/10.1002/pmic.200800109
- Skog J., Würdinger T., van Rijn S. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008. Vol. 10. No. 12. P. 1470–1476. https://doi.org/10.1038/ncb1800
- Smith K.A. Interleukin-2: Inception, impact, and implications. Science. 1988. Vol. 240. P. 1169–1176.
- Stepanets О.V., Chichasova N.V., Nasonova M.В., Samsonov M.Yu., Nasonov E.L. Soluble receptors of TNF-alpha with molecular mass 55 kDa in rheumatoid arthritis: clinical role. Clin. Med. (Rus. J.). 2003. Vol. 81. No. 4. P. 42–46.
- Sun H., Fan Z., Gingras A.R., Lopez-Ramirez M.A., Ginsberg M.H., Ley K. Frontline Science: A flexible kink in the transmembrane domain impairs beta2 integrin extension and cell arrest from rolling. J. Leukoc. Biol. 2020. Vol. 107. No. 2. P. 175–183. https://doi.org/10.1002/JLB.1HI0219-073RR
- Tannetta D., Dragovic R., Alyahyaei Z., Southcombe J. Extracellular vesicles and reproduction–promotion of successful pregnancy. Cell Mol. Immunol. 2014. Vol. 11. No. 6. P. 548–563. https://doi.org/10.1038/cmi.2014.42
- Tanuwidjaya E., Schittenhelm R.B., Faridi P. Soluble HLA peptidome: A new resource for cancer biomarkers. Front. Oncol. 2022. Vol. 12. P. 1069635. https://doi.org/10.3389/fonc.2022.1069635
- Troncale S., Tahi F., Camprad D., Vannier J.-P., Guespin J. Modeling and simulation with hybrid functional petri nets of the role of interleukin-6 in human early haematopoiesis. Proceedings of the Pacific Symposium (Maui, Hawaii, USA, 3–7 January 2006). World Scientific. 2006. No. 11. P. 427–438.
- Valadi H., Ekström K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007. Vol. 9. No. 6. P. 654–659. https://doi.org/10.1038/ncb159
- Viaud S., Terme M., Flament C. et al. Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Ralpha. PLoS One. 2009. Vol. 4. No. 3. e4942. https://doi.org/10.1371/journal.pone.0004942
- Wajant H., Pfizenmaier K., Scheurich P. Tumor necrosis factor signaling. Cell. Death. Differ. 2003. Vol. 10. No. 1. P. 45–65. https://doi.org/10.1038/sj.cdd.4401189
- Walsh D.S., Siritongtaworn P., Pattanapanyasat K. et al. Lymphocyte activation after non-thermal trauma. Br. J. Surg. 2000. Vol. 87. No. 2. P. 223–230. https://doi.org/10.1046/j.1365-2168.2000.01341.x
- Werner K., Schwede F., Genieser H.-G., Geiger J., Butt E. Quantification of cAMP and cGMP analogs in intact cells: pitfalls in enzyme immunoassays for cyclic nucleotides. Naunyn-Schmiedeberg's Archives of Pharmacology. 2011. Vol. 384. No. 2. P. 169–176. https://doi.org/10.1007/s00210-011-0662-6
- Yan S.F., Ramasamy R., Schmidt A.M. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem. Pharmacol. 2010. Vol. 79. No. 10. P. 1379–1386. https://doi.org/10.1016/j.bcp.2010.01.013
- Zajkowska J., Hermanowska-Azpakowiccz T., Swierzbinska R. Concentration of soluble CD4, CD8 and CD25 receptors in early localized and early disseminated Lyme borreliosis. Infection., 2001. Vol. 29. No. 2. P. 71–74. https://doi.org/10.1007/s15010-001-1078-x
- Zhang X., Wang L., Zhang H. et al. The effects of cigarette smoke extract on the endothelial production of soluble intercellular adhesion molecule-1 are mediated through macrophages, possibly by inducing TNF-alpha release. Methods Find Exp. Clin. Pharmacol. 2002. Vol. 24. No. 5. P. 261–265. https://doi.org/10.1358/mf.2002.24.5.802302
Supplementary files


