Prediction of adverse effects of drug-drug interactions on the cardiovascular system based on the analysis of structure-activity relationships

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The co-administration of drugs often leads to drug-drug interactions, which may be accompanied by various adverse drug reactions that pose a threat to the life and health of patients. The effect caused by adverse drug reactions from the cardiovascular system is one of the most significant manifestations of drug-drug interaction. Clinical assessment of adverse drug reactions resulting from drug-drug interaction between all drug pairs used in therapeutic practice is not possible. The purpose of this work was to build models using structure-activity analysis to predict the effects of adverse drug reactions on the cardiovascular system, mediated by interactions between drug pairs when they are taken together. Data on adverse effects resulting from drug-drug interaction were obtained from the DrugBank database. The data on drug pairs that do not cause the corresponding effects, necessary for building accurate structure-activity models, were obtained from the TwoSides database, which contains the results of the analysis of spontaneous reports. Two types of descriptors were used to describe a pair of drug structures: PoSMNA descriptors and probabilistic estimates of the prediction of biological activities obtained using the PASS program. Structure-activity relationships were established using the Random Forest method. Prediction accuracy was calculated by means of a five-fold cross-validation. The highest accuracy values were obtained using PASS probabilistic estimates as descriptors. The area under the ROC curve was 0.94 for bradycardia, 0.96 for tachycardia, 0.90 for arrhythmia, 0.90 for ECG QT prolongation, 0.91 for hypertension, 0.89 for hypotension.

Авторлар туралы

V. Sukhachev

Institute of Biomedical Chemistry

Email: withstanding@yandex.ru
119121 Moscow, Russia

S. Ivanov

Institute of Biomedical Chemistry

Email: withstanding@yandex.ru
119121 Moscow, Russia

A. Dmitriev

Institute of Biomedical Chemistry

Email: withstanding@yandex.ru
119121 Moscow, Russia

Әдебиет тізімі

  1. Rekić, D., Reynolds, K. S., Zhao, P., Zhang, L., Yoshida, K., Sachar, M., Piquette, M. M., Huang, S. M., and Zineh, I. (2017) Clinical drug-drug interaction evaluations to inform drug use and enable drug access, J. Pharm. Sci., 106, 2214-2218, doi: 10.1016/j.xphs.2017.04.016.
  2. Carpenter, M., Berry, H., and Pelletier, A. L. (2019) Clinically relevant drug-drug interactions in primary care, Am. Fam. Physician, 99, 558-564.
  3. Kim, J., and Parish, A. L. (2017) Polypharmacy and medication management in older adults, Nurs. Clin. North. Am., 52, 457-468, doi: 10.1016/j.cnur.2017.04.007.
  4. Triaridis, S., Tsiropoulos, G., Rachovitsas, D., Psillas, G., and Vital, V. (2009) Spontaneous haematoma of the pharynx due to a rare drug interaction, Hippokratia, 13, 175-177.
  5. Костылева М. Н., Строк А. Б., Постников С. С., Грацианская А. Н., Ермилин А. E. (2022) Фармакотерапия в многопрофильном педиатрическом стационаре: полипрагмазия и риск лекарственных взаимодействий на примере клинического случая, Безопасность и риск фармакотерапии, 10, 302-314, doi: 10.30895/2312-7821-2022-10-3-302-314.
  6. Ключников С. О. (2014) Полипрагмазия: пути решения проблемы, Детские инфекции, 13, 36-41, doi: 10.22627/2072-8107-2014-13-4-36-41.
  7. Ivanov, S., Lagunin, A., Filimonov, D., and Poroikov, V. (2019) Assessment of the cardiovascular adverse effects of drug-drug interactions through a combined analysis of spontaneous reports and predicted drug-target interactions, PLoS Comput. Biol., 15, e1006851, doi: 10.1371/journal.pcbi.1006851.
  8. Зырянов С. К., Затолочина К. Э., Казаков А. С. (2022) Актуальные вопросы обеспечения безопасности пациентов: роль фармаконадзора, Общественное здоровье, 2, 25-34, doi: 10.21045/2782-1676-2021-2-3-25-34.
  9. Noguchi, Y., Tachi, T., and Teramachi, H. (2020) Comparison of Signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems, Pharm. Res., 37, 86, doi: 10.1007/s11095-020-02801-3.
  10. Казаков А. С., Лепахин В. К., Астахова А. В. (2013) Осложнения фармакотерапии, связанные с взаимодействием лекарственных средств, Рос. мед. биол. вестн. им. акад. И.П. Павлова, 21, 70-76, doi: 10.17816/pavlovj2013370-76.
  11. Chen, Z., Elizabeth, R., Lin, L., Nicole, P., and Jiuyong, L. (2020) Detecting high-quality signals of adverse drug-drug interactions from spontaneous reporting data, JBI, 112, 103603, doi: 10.1016/j.jbi.2020.103603.
  12. Strandell, J., Bate, A., Lindquist, M., and Edwards, I. R. (2008) Drug-drug interactions - a preventable patient safety issue? Br. J. Clin. Pharmacol., 65, 144-146, doi: 10.1111/j.1365-2125.2007.02981.x.
  13. Taguchi, Y., and Turki, T. (2021) Novel method for the prediction of drug-drug interaction based on gene expression profiles, Eur. J Pharm. Sci., 160, 105742, doi: 10.1016/j.ejps.2021.105742.
  14. Huang, J., Niu, C., Green, C. D., Yang, L., Mei, H., and Han, J. D. (2013) Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network, PLoS Comput. Biol., 9, e1002998, doi: 10.1371/journal.pcbi.1002998.
  15. Varma, M. V., Pang, K. S., Isoherranen, N., and Zhao, P. (2015) Dealing with the complex drug-drug Interactions: towards mechanistic models, Biopharm. Drug Dispos., 36, 71-92, doi: 10.1002/bdd.1934.
  16. Kastrin, A., Ferk, P., and Leskošek, B. (2018) Predicting potential drug-drug interactions on topological and semantic similarity features using statistical learning, PLoS One, 13, e0196865, doi: 10.1371/journal.pone.0196865.
  17. Shankar, S., Bhandari, I., Okou, D. T., Srinivasa, G., and Athri, P. (2021) Predicting adverse drug reactions of two-drug combinations using structural and transcriptomic drug representations to train an artificial neural network, Chem. Biol. Drug. Des., 97, 665-673, doi: 10.1111/cbdd.13802.
  18. Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., and Wilson, M. (2018) DrugBank 5.0: A major update to the DrugBank database for 2018, Nucleic Acids Res., 46, D1074-D1082, doi: 10.1093/nar/gkx1037.
  19. Tatonetti, N. P., Ye, P. P., Daneshjou, R., and Altman, R. B. (2012) Data-driven prediction of drug effects and interactions, Sci. Transl. Med., 4, 125, doi: 10.1126/scitranslmed.3003377.
  20. Hazell, L., and Shakir, S. A. W. (2006) Under-reporting of adverse drug reactions: a systematic review, Drug Saf., 29, 385-396, doi: 10.2165/00002018-200629050-00003.
  21. Filimonov, D. A, and Poroikov, V. V. (2008) Probabilistic Approaches in Activity Prediction. Chemoinformatics Approaches to Virtual Screening, RSC Publishing, Cambridge, pp. 182-216, doi: 10.1039/9781847558879-00182.
  22. Dmitriev, A., Filimonov, D., Lagunin, A., Karasev, D., Pogodin, P., Rudik, A., and Poroikov, V. (2019) Prediction of severity of drug-drug interactions caused by enzyme inhibition and activation, Molecules, 24, E3955, doi: 10.3390/molecules24213955.
  23. Filimonov, D., Poroikov, V., Borodina, Y., and Gloriozova, T. (1999) Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors, J. Chem. Inf. Comput. Sci., 39, 666-670, doi: 10.1021/ci980335o.
  24. Breiman, L. (2001) Random forests, Mach. Learn., 45, 5-32, doi: 10.1023/A:1010933404324.
  25. Wright, M. N., and Ziegler, A. (2017) Ranger: a fast implementation of Random Forests for high dimensional data in C++ and R, J. Stat. Softw., 77, 1-17, doi: 10.18637/jss.v077.i01.
  26. Sing, T., Sander, O., Beerenwinkel, N., and Lengauer, T. (2005) ROCR: visualizing classifier performance in R, Bioinformatics, 21, 3940-3941, doi: 10.1093/bioinformatics/bti623.
  27. Witchel, H. J., Hancox, J. C., and Nutt, D. J. (2003) Psychotropic drugs, cardiac arrhythmia, and sudden death, J. Clin. Psychopharmacol., 23, 58-77, doi: 10.1097/00004714-200302000-00010.
  28. Liu, R., AbdulHameed, M. D. M., Kumar, K., Yu, X., Wallqvist, A., and Reifman, J. (2017) Data-driven prediction of adverse drug reactions induced by drug-drug interactions, BMC Pharmacol. Toxicol., 18, 44, doi: 10.1186/s40360-017-0153-6.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».