Export and Emission of carbon dioxide by downstream of Amur River
- Авторлар: Tishchenko P.Y.1, Zvalinsky V.I.1, Pavlova G.Y.1, Tishchenko P.P.1, Chichkin R.V.1, Shkirnikova E.M.1, Anokhina R.S.2
-
Мекемелер:
- V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
- M.V. Lomonosov Moscow State University
- Шығарылым: Том 52, № 2 (2025)
- Беттер: 111-123
- Бөлім: ВЗАИМОДЕЙСТВИЕ ВОД СУШИ С ОКРУЖАЮЩЕЙ СРЕДОЙ
- URL: https://journal-vniispk.ru/0321-0596/article/view/295087
- DOI: https://doi.org/10.31857/S0321059625020094
- EDN: https://elibrary.ru/UBRDMH
- ID: 295087
Дәйексөз келтіру
Аннотация
Measurements of pH, total alkalinity, humic substances were carried out in June 2005, 2006 in the waters of the downstream Amur River along distance 489 km on the 13 hydrochemical stations between the cities of Komsomolsk-on-Amur and the Nikolaevsk-on-Amur. In August 2016, hydrochemical observations were carried out at the mouth Amur River, which included measurements of pH, total alkalinity, humic substances, concentrations of major ions of river water (Na+, K+K+, Ca2+, Mg2+, Cl–Cl–) and dissolved organic carbon. The average annual rate of chemical weathering in the Amur River basin has been established which equal to 10.7 t/(km2 year). Weathering of rocks and producing of organic matter by photosynthesis lead to the consumption of the atmospheric CO2 in the river basin. Amur River annually exports this atmospheric CO2 into the marine environment equaled to . It has been established that the Amur River waters annually emit of carbon dioxide to the atmosphere. The balance of opposite processes (CO2 export and CO2 emission) showed that the ecosystem of the Amur River is a weak source of carbon dioxide to the atmosphere. The annual export of total alkalinity by the Amur into the marine environment (mol/year) increases normalized total alkalinity in the surface layer off the eastern shores of the Sakhalin Island (Sea of Okhotsk) and in the northern part of the Sea of Japan.
Негізгі сөздер
Авторлар туралы
P. Tishchenko
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
V. Zvalinsky
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
G. Pavlova
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
P. Tishchenko
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
R. Chichkin
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
E. Shkirnikova
V.I.Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences
Email: tpavel@poi.dvo.ru
Ресей, Vladivostok, 690041
R. Anokhina
M.V. Lomonosov Moscow State University
Email: tpavel@poi.dvo.ru
Ресей, Moscow, 119234
Әдебиет тізімі
- Геокриология СССР. Восточная Сибирь и Дальний Восток / Под ред. Э.Д. Ершова. М.: Недра, 1989. 515 с.
- Данилов-Данильян В.И., Гельфан А.Н. Экстраординарное наводнение в бассейне реки Амур // Вестн. РАН. 2014. Т. 84. № 9. С. 817–825.
- Деев М.Г., Мирлин Е.Г. Японское море // Большая российская энциклопедия. М.: БРЭ, 2017. Т. 35. C. 759–760.
- Дривер Дж. Геохимия природных вод. М.: Мир, 1985. 440 с.
- Звалинский В.И., Тищенко П.Я., Колтунов А.М. и др. Карбонатная система, гидрохимические и продукционные характеристики нижнего течения реки Амур // Состояние морских экосистем, находящихся под влиянием стока реки Амур. Дальнаука: Владивосток, 2009. С. 35–53.
- Калугин А.С. Модель формирования стока реки Амур и ее применение для оценки возможных изменений водного режима // Дис. … канд. геогр. наук. М.: ИВП РАН, 2016. 185 с.
- Махинов А.Н. Ледяной покров Амура // Природа. 2019. № 3. С. 28–38.
- Михайлик Т.А. Гидрохимия реки Раздольной и ее влияние на экологическое состояние Амурского залива Японского моря // Дис. … канд. хим. наук. Владивосток: ТОИ ДВО РАН, 2024. 111 с.
- Павлова Г.Ю., Тищенко П.Я., Недашковский А.П. Распределение щелочности и растворенного кальция в Охотском море // Океанология. 2008. Т. 48. № 1. С. 27–37.
- Тищенко П.Я., Михайлик Т.А., Павлова Г.Ю. и др. Сезонная изменчивость карбонатной системы реки Раздольной // Вод. ресурсы. 2023. Т. 50. № 1. С. 68–80.
- Тищенко П.Я., Ходоренко Н.Д., Барабанщиков Ю.А. и др. Диагенез органического вещества в осадках покрытых зарослями зостеры морской (Zostera Marina L.) // Океанология. 2020. Т. 60. № 3. С. 393–406.
- Тищенко П.Я., Стунжас П.А., Павлова Г.Ю. и др. Алгоритм расчета минерализации речных и солености эстуарных вод из данных электропроводности // Океанология. 2019. Т. 59. № 4. С. 591–599.
- Шулькин В.М., Богданова Н.Н., Перепелятников Л.В. Пространственно-временная изменчивость химического состава речных вод юга Дальнего Востока РФ // Вод. ресурсы. 2009. Т. 36. № 4. С. 428–439.
- Шулькин В.М., Семыкина Г.И. Поступление загрязняющих веществ в залив Петра Великого и оценка их вклада в создание экологических проблем. Современное экологическое состояние залива Петра Великого Японского моря: монография / Отв. ред. Н.К. Христофорова. Владивосток: Изд. дом Дальневосточного федерал. ун-та, 2012. С. 76–113.
- Якунин Л.П. Распределение речного стока по фарватерам устья Амура // Тр. ДВНИГМИ. 1978. Вып. 71. С. 162–168.
- Abril G., Bouillon S., Darchambeau F. et al. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters // Biogeosci. 2015. V. 12. 67–78.
- Alin S.R., Rasera M.d.F.F.L., Salimon C.I. et al. Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets // J. Geophys. Res. 2011. V. 116. G01009. doi: 10.1029/2010JG001398
- Berner R.A., Lasaga A.G., Garrels R.M. The carbonate silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years // Amer. J. Sci. 1983. V. 283. P. 641–683.
- Butman D., Raymond P.A. Significant efflux of carbon dioxide from streams and rivers in the United States // Nature Geosci. 2011. V. 4. P. 839–842.
- Cai W.J., Guo X., Chen C.T.A. et al. A comparative overview of weathering intensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers // Continental Shelf Res. 2008. V. 28. P. 1538–1549.
- Cole J.J., Caraco N.F. Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism // Mar. Freshwater Res. 2001. V. 52. P. 101–110.
- Drake D.W., Tank S.E., Zhulidov A.V. et al. Increasing Alkalinity Export from Large Russian Arctic Rivers // Environ. Sc. Technol. 2018. V. 52. № 15. P. 8302–8308.
- Dristi A., Xu Y.J. Large Uncertainties in CO2 Water–Air Outgassing Estimation with Gas Exchange Coefficient KT for a Large Lowland River // Water 2023. V. 15. 2621. https://doi.org/10.3390/w15142621
- Gaillardet J., Dupre B., Louvat P., Allegre C.J. Global silicate weathering and CO2 consumption rates deduced 2 from the chemistry of large rivers // Chem. Geol. 1999. V. 159. P. 3–30.
- Gómez-Gener L., Rocher-Ros G., Battin T. et al. Global carbon dioxide efflux from rivers enhanced by high nocturnal emissions // Nature Geosci. 2021. V. 14. P. 289–294.
- Grasshoff K., Ehrhardt M., Kremling K. Methods of Seawater Analysis. Weinheim/Deerfield Beach, Florida: Verlag Chemie, 1983. 419 p.
- Hall R.O. Jr., Ulseth A.J. Gas exchange in streams and rivers // WIREs Water. 2019. e1391. https://doi.org/10.1002/wat2.1391
- http://gis.vodinfo.ru/hydrographs/
- Hutchins R.H.S., Prairie Y.T., del Giorgio P.A. Large-scale landscape drivers of CO2, CH4, DOC, and DIC in boreal river networks // Global Biogeochem. Cycles. 2019. V. 33. P. 125–142. https://doi.org/10.1029/2018GB006106
- Marescaux A., Thieu V., Borges A.V. et al. Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted Seine River in France // Sci. Rep. 2018. V. 8. 13961. doi: 10.1038/s41598-018-32332-2 1
- Meybeck M. Carbon, nitrogen, and phosphorus transport by world rivers // Am. J. Sci. 1982. V. 282. P. 401–450.
- Meybeck M. Riverine transport of atmospheric carbon: sources, global typology and budget // Water, Air, Soil Pollut. 1993. V. 70. № 1–4. P. 443–463.
- Mortatti J., Probst J.-L. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations // Chem. Geol. 2003. V. 197. P. 177–196.
- Raymond P.A., Cole J.J. Increase in the export of alkalinity from Northern America’s largest river // Sci. 2003. V. 301. P. 88–91.
- Raymond P.A., Hartmann J., Lauerwald R. et al. Global carbon dioxide emissions from inland waters // Nature. 2013. V. 503. P. 355–359.
- Redfield A.C., Ketchum B.H., Richards F.A. The influence of organisms on the composition of seawater // The Sea / Ed. M.N. Hill. New York: Intersci., 1963. V. 2. P. 26–77.
- Talley L.D., Tishchenko P.Ya., Luchin V. et al. Atlas of Japan (East) Sea hydrographic properties in summer, 1999 // Progress Oceanogr. 2004. V. 61. № 2–4. Р. 277–348.
- Talley L., Don-Ha Min, Lobanov V. et al. Japan/East Sea Water Masses and their Relation to the Sea’s Circulation // Oceanogr. 2006. V. 19. № 3. P. 32–49.
- Tye A.M., Williamson J.L., Jarvie H.P. et al. Dissolved inorganic carbon export from rivers of Great Britain: Spatial distribution and potential catchment-scale controls // J. Hydrol. 2022. V. 615. 128677.
- Viers J., Oliva P., Dandurand J.-L. et al. Chemical Weathering Rates, CO2 Consumption, and Control Parameters Deduced from the Chemical Composition of Rivers // Treatise Geochem. 2014. V. 7. Ch. 6. P. 175–194.
- Wanninkhof R. Relationship between wind speed and gas exchange over the ocean // J. Geophys. Res. 1992. V. 97. P. 7373–7382. doi: 10.1029/92JC00188
- Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited // Limnol. Oceanogr.: Methods. 2014. V. 12. P. 351–362. doi: 10.4319/lom.2014.12.351
- Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas // Mar. Chem. 1974. V. 2. P. 203–215.
- Weiss R.F. The solubility of nitrogen, oxygen and argon in water and seawater // Deep-Sea Res. 1970. V. 17. P. 721–735. https://doi.org/10.1016/0011-7471(70)90037-9
- Zheng X., Nel W., Peng J., Wu W. Hydrochemistry, chemical weathering and their significance on carbon cycle in the Heilong (Amur) River Basin, Northeast China // Chemosphere. 2023. V. 327. 138542.
Қосымша файлдар
