The efficiency of thermal protection of ICE pistons with the micro-arc oxidation

Cover Page

Cite item

Abstract

BACKGROUND: In order to protect pistons of internal combustion engines (ICE) from burnout and increase their durability, it is reasonable to use ceramic coatings formed on the piston head with micro-arc oxidation (MAO). Many scientific papers have been devoted to the study of the efficiency of these coatings. However, most of these studies were carried out at laboratory facilities simulating the engine operation, generally, not taking into account the real thermophysical parameters of the MAO coating. Therefore, the thermal protection efficiency of these coatings is difficult to assess.

AIM: Study of efficiency of the thermal protection of pistons using a ceramic coating formed by micro-arc oxidation on the piston head with numerical simulation.

METHODS: The study was conducted in the SolidWorks Simulation software. Two piston aluminum alloys were used as the piston material: AK12d (with a silicon content of 12%) and AK4-1 (with a silicon content of 0.35%). Temperature loads corresponding to the operation of a real engine were applied to the surfaces of the model piston. At the first stage of the study, the thermal state of pistons made of different uncoated alloys was simulated. At the second and third stages of the study, the effect of the coating thickness on the piston thermal state was simulated. The piston material of the second study stage was the AK4-1 alloy. The piston material of the third study stage was the AK12d alloy. Ceramics, which properties correspond to the coatings properties formed with the micro-arc oxidation method on these alloys, were used as the coating material. The coating thickness varied in the range from 50 to 350 µm in increments of 100 µm. The probing method was used to determine the temperature in various areas of the piston, such as at the piston head surface at the MAO coating and under it, in the area of piston grooves, at a piston skirt and the piston head from the side of a crankcase.

RESULTS: With the simulation, it was found that:

  1. The micro-arc coating of the piston head reduces the thermal tension of the piston regardless of the aluminum alloy chemical composition.
  2. The efficiency of the piston’s thermal protection increases with an increase in the ceramic coating thickness and a decrease in its thermal conductivity coefficient.
  3. The greatest heat-protecting effect is achieved by the piston made of the AK12d eutectic alloy.

CONCLUSIONS: It is found that the MAO coating at the piston head is an effective way to reduce the thermal tension of the ICE pistons. Increasing the ceramic coating thickness and a decrease in its thermal conductivity coefficient increases the efficiency of the pistons thermal protection. Reducing the thermal conductivity of the MAO coating and increasing the MAO coating thickness increases the temperature on the coating surface.

About the authors

Natalia Yu. Dudareva

Ufa University of Science and Technology

Author for correspondence.
Email: natalia_jd@mail.ru
ORCID iD: 0000-0003-2269-0498
SPIN-code: 6069-6928

Dr. Sci. (Engineering), Associate Professor, Professor of the of Internal Combustion Engines Department

Russian Federation, 32 Z. Validie street, 450076 Ufa

Alexander V. Kolomeichenko

Central Scientific Research Automobile and Automotive Engines Institute «NAMI»

Email: kolom_sasha@inbox.ru
ORCID iD: 0000-0002-3865-4486
SPIN-code: 2560-5163

Dr. Sci. (Engineering), Professor; Head of the Advanced Technologies Department of the Center for Agricultural Engineering

Russian Federation, Moscow

Yury E. Kisel

Bryansk State Engineering Technological University

Email: ypk2@mail.ru
ORCID iD: 0000-0002-5986-3922
SPIN-code: 9996-2193

Dr. Sci. (Engineering), Associate Professor; Professor of the General Technical Disciplines and Physics Department

Russian Federation, Bryansk

References

  1. Razuvaev AV, Slobodina EN. The operating conditions of the internal combustion engine with high temperature cooling. Journal of Physics Conference Series. 2020;1441(1):012026. doi: 10.1088/1742-6596/1441/1/012026
  2. Belov VP, Apelinskiy DV, Bezhenar VN. Experimental assessment of the temperature state of tractor diesel pistons. Tractors and Agricultural Machinery. 2022:89(2):111–120. doi: 10.17816/0321-4443-105717
  3. Caldera M, Massone JM, Martinez RA. Failure analysis of a damaged direct injection diesel engine piston. Journal of Failure Analysis and Prevention. 2017;17:979−988. doi: 10.1007/s11668-017-0327-y
  4. Li Z, Li J, Chen Z, et al. Experimental and computational study on thermomechanical fatigue life of aluminium alloy piston. Fatigue and Fracture of Engineering Materials and Structures. 2021;44:141−155. doi: 10.1111/ffe.13342
  5. Alshmri F. Lightweight material: Aluminium high silicon alloys in the automotive industry. Advanced Materials Research Vols. 2013;774-776:1271−1276. doi: 10.4028/ href='www.scientific.net' target='_blank'>www.scientific.net /AMR.774-776.1271
  6. Gots AN, Glinkin SA. Failure criteria of heat-stressed parts of piston engines and the review of methods for assessment of pistons durability. Tractors and agricultural machines. 2016;11:40−44. (In Russ). EDN: WYQMYL
  7. Sergeev S, Albieri MS, Yatsenko V, et al. Theoretical and practical study of possibility to decrease thermal stress in pistons of internal combustion diesel engine by using galvanic plasma modification. International Journal of Advanced Science and Technology. 2019;28(8):550−562. doi: 10.13140/RG.2.2.32284.44162
  8. Helmisyah AJ, Ghazali MJ, Abdullah S. Characterisation of thermal barrier coating on piston crown for compressed natural gas direct injection (CNGDI) engines. Applied Science and Engineering Progress. 2012;5(4):73−77. doi: 10.4028/ href='www.scientific.net/AMM.663.304' target='_blank'>www.scientific.net/AMM.663.304
  9. Abhinav T, Kustagi HK, Shankar AR. Adhesion Strength of Plasma Sprayed Coatings — A Review. Intelligent Manufacturing and Energy Sustainability. Smart Innovation, Systems and Technologies. 2020;169:77−83. doi: 10.1007/978-981-15-1616-0_8
  10. Markov MA, Bykova AD, Krasikov AV, et al. Formation of wear- and corrosion-resistant coatings by the microarc oxidation of aluminum. Refractories and Industrial Ceramics. 2018;4(59):207–214. doi: 10.1007/s11148-018-0207-3
  11. Suminov IV, Epelfeld AV, Lyudin VB, et al. Microarc oxidation: theory, technology, equipment. Moscow: ECOMET; 2005. (In Russ).
  12. Kolomeichenko AV, Kravchenko IN. Elemental composition and microhardness of the coatings prepared on faced aluminum alloys by plasma electrolytic oxidation in a silicate-alkaline electrolyte. Russian Metallurgy (Metally). 2019;(13):1410−1413. doi: 10.1134/S0036029519130147
  13. Basinyuk VL, Kolomeichenko AV, Mardosevich EI, et al. Thermal state of friction contact of aluminum — alloy parts coated with Al2O3. Journal of Friction and Wear. 2005;26(3):62−70.
  14. Curran JA, Kalkancı H, Magurova Yu. Mullite-rich plasma electrolytic oxide coatings for thermal barrier applications. Surface and Coatings Technology. 2007;201:8683−8687. doi: 10.1016/j.surfcoat.2006.06.050
  15. Dudareva NYu, Kruglov AB, Gallyamova RF. Structure and thermophysical properties of coatings formed by the method of microarc oxidation on an aluminum alloy AK4-1. Solid State Phenomena. 2018;284:1235−1241. doi: 10.4028/ href='www.scientific.net/SSP.284.1235' target='_blank'>www.scientific.net/SSP.284.1235
  16. Dudareva NYu, Ivashin PV, Kruglov AB. Investigation of the thermophysical properties of the oxide layer formed by microarc oxidation on Al-Si alloy. MATEC Web of Conferences. 2017;129:02015. doi: 10.1051/matecconf/201712902015
  17. Mar’in DM, Khokhlov AL, Shlushchenko AA, et al. Influence of oxidized layer on thermal stress of internal combustion engine pistons. Science and world. 2014;1(5):108−109. (In Russ).
  18. Subaeva AK, Khokhlov AL. The thermal factor reduction of the piston in the internal combustion engine by the method of micro-arc oxidation of the head. The Turkish Online Journal of Design, Art and Communication TOJDAG. 2017:1749–1756. doi: 10.7456/1070DSE/155
  19. Shpakovsky VV. Influence of partially dynamic thermal insulation on the temperature state of the piston surface. Internal combustion engines. 2010;2:92–95. (in Russ). EDN: TTYTPX
  20. Shackelford JF, Doremus RH. Ceramic and Glass Materials. Structure, Properties and Processing. New York : Springer; 2008. doi: 10.1007/978-0-387-73362-3
  21. Nudehi S, Steffen JR. Analysis of Machine Elements Using SolidWorks Simulation 2016. Mission, KS: SDC Publications; 2016.
  22. MTI. An Introduction to Stress Analysis Applications with SolidWorks Simulation, Student Guide Massachusetts. USA: Massachusetts; 2010.
  23. Gorbachev VG, Zagayko SA, Rudaya NV, et al. Simulation system “Albea” (core). User Manual. Ufa : UGATU, 1995. (In Russ).
  24. Musin N, Dudareva N. Investigation of the effect of the coating formed by microarc oxidation on the piston top on the thermal state of the internal combustion engine parts. MATEC Web of Conferences. 2018;224:03008. doi: 10.1051/matecconf/201822403008.
  25. Zakharov VV. The effect of additional annealing before quenching on the properties of clad sheets made of AK4-1h alloy manufactured according to the technology of LLC “KUMZ”. Technology of light alloys. 2023;1:6–11. (In Russ). doi: 10.24412/0321-4664-2023-1-6-11
  26. Mechalikh M, Benhammou A, Zidane I, et al. Study of piston thermo-elastic behaviour under thermomechanical solicitations. International Journal of Automotive and Mechanical Engineering. 2019;16(4):7287–7298
  27. Liu Y, Lei J, Niu X, et al. Experimental and simulation study on aluminium alloy piston based on thermal barrier coating. Scientific Reports. 2022;12:10991. doi: 10.1038/s41598-022-15031-x
  28. Beletsky VM, Krivov GA. Aluminum alloys (composition, properties, technology, application). Guide. Kiev: Komintech; 2005. (In Russ).
  29. Alyamovsky AA. Engineering calculations in SolidWorks Simulation. Moscow: DMK-Press; 2010. (in Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The engine piston assembly model: а — the SolidWorks 3D-model; b — the meshed model.

Download (171KB)
3. Fig. 2. Diagram of temperature and mechanical loads: а — at the main piston surfaces; b — at the piston grooves surface.

Download (119KB)
4. Fig. 3. Temperature gauging points in the piston.

Download (1MB)
5. Fig. 4. Average temperature at the piston head surface.

Download (175KB)
6. Fig. 5. Average temperature at the piston head surface under the coating.

Download (160KB)
7. Fig. 6. Average temperature in the area of piston grooves.

Download (110KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».